TX2之YOLOV3环境部署

参考:https://jkjung-avt.github.io/yolov3/

0 背景

YOLOV3作为目标检测现阶段性能最好的算法之一,具有很强的实用性,在TX2上部署YOLOV3可以解决很多现实的目标检测问题。

环境依赖:opencv3.4.0 + cuda9.0 + cudnn7.1.5

1 opencv3.4.0

网上介绍说opencv3.4.1运行yolo会有问题,因此先卸载旧版本opencv,然后安装3.4.0版本的,具体安装方法可参考《TX2查看OpenCV版本并卸载重装》,也可按照以下方法安装

1.1 安装依赖

### Remove all old opencv stuffs installed by JetPack (or OpenCV4Tegra)
$ sudo apt-get purge libopencv*
### I prefer using newer version of numpy (installed with pip), so
### I'd remove this python-numpy apt package as well
$ sudo apt-get purge python-numpy
### Remove other unused apt packages
$ sudo apt autoremove
### Upgrade all installed apt packages to the latest versions (optional)
$ sudo apt-get update
$ sudo apt-get dist-upgrade
### Update gcc apt package to the latest version (highly recommended)
$ sudo apt-get install --only-upgrade g++-5 cpp-5 gcc-5
### Install dependencies based on the Jetson Installing OpenCV Guide
$ sudo apt-get install build-essential make cmake cmake-curses-gui \
                       g++ libavformat-dev libavutil-dev \
                       libswscale-dev libv4l-dev libeigen3-dev \
                       libglew-dev libgtk2.0-dev
### Install dependencies for gstreamer stuffs
$ sudo apt-get install libdc1394-22-dev libxine2-dev \
                       libgstreamer1.0-dev \
                       libgstreamer-plugins-base1.0-dev
### Install additional dependencies according to the pyimageresearch
### article
$ sudo apt-get install libjpeg8-dev libjpeg-turbo8-dev libtiff5-dev \
                       libjasper-dev libpng12-dev libavcodec-dev
$ sudo apt-get install libxvidcore-dev libx264-dev libgtk-3-dev \
                       libatlas-base-dev gfortran
$ sudo apt-get install libopenblas-dev liblapack-dev liblapacke-dev
### Install Qt5 dependencies
$ sudo apt-get install qt5-default
### Install dependencies for python3
$ sudo apt-get install python3-dev python3-pip python3-tk
$ sudo pip3 install numpy
$ sudo pip3 install matplotlib

1.2 源码编译

### Download opencv-3.4.0 source code
$ mkdir -p ~/opencv3.4.0
$ cd ~/opencv3.4.0
$ wget https://github.com/opencv/opencv/archive/3.4.0.zip \
       -O opencv-3.4.0.zip
$ unzip opencv-3.4.0.zip
### Build opencv (CUDA_ARCH_BIN="6.2" for TX2, or "5.3" for TX1)
$ cd ~/opencv3.4.0/opencv-3.4.0
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local \
        -D WITH_CUDA=ON -D CUDA_ARCH_BIN="6.2" -D CUDA_ARCH_PTX="" \
        -D WITH_CUBLAS=ON -D ENABLE_FAST_MATH=ON -D CUDA_FAST_MATH=ON \
        -D ENABLE_NEON=ON -D WITH_LIBV4L=ON -D BUILD_TESTS=OFF \
        -D BUILD_PERF_TESTS=OFF -D BUILD_EXAMPLES=OFF \
        -D WITH_QT=ON -D WITH_OPENGL=ON ..
$ make -j4
$ sudo make install

配置信息

-- General configuration for OpenCV 3.4.0 =====================================
--   Version control:               unknown
-- 
--   Platform:
--     Timestamp:                   2019-08-06T03:14:54Z
--     Host:                        Linux 4.4.38-tegra aarch64
--     CMake:                       3.5.1
--     CMake generator:             Unix Makefiles
--     CMake build tool:            /usr/bin/make
--     Configuration:               RELEASE
-- 
--   CPU/HW features:
--     Baseline:                    NEON FP16
--       required:                  NEON
--       disabled:                  VFPV3
-- 
--   C/C++:
--     Built as dynamic libs?:      YES
--     C++ Compiler:                /usr/bin/c++  (ver 5.4.0)
--     C++ flags (Release):         -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -fvisibility-inlines-hidden -O3 -DNDEBUG  -DNDEBUG
--     C++ flags (Debug):           -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -fvisibility-inlines-hidden -g  -O0 -DDEBUG -D_DEBUG
--     C Compiler:                  /usr/bin/cc
--     C flags (Release):           -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -O3 -DNDEBUG  -DNDEBUG
--     C flags (Debug):             -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -g  -O0 -DDEBUG -D_DEBUG
--     Linker flags (Release):
--     Linker flags (Debug):
--     ccache:                      NO
--     Precompiled headers:         YES
--     Extra dependencies:          dl m pthread rt /usr/lib/aarch64-linux-gnu/libGLU.so /usr/lib/aarch64-linux-gnu/libGL.so cudart nppc nppial nppicc nppicom nppidei nppif nppig nppim nppist nppisu nppitc npps cublas cufft -L/usr/local/cuda-9.0/lib64
--     3rdparty dependencies:
-- 
--   OpenCV modules:
--     To be built:                 calib3d core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev dnn features2d flann highgui imgcodecs imgproc ml objdetect photo python3 python_bindings_generator shape stitching superres video videoio videostab
--     Disabled:                    js world
--     Disabled by dependency:      -
--     Unavailable:                 java python2 ts viz
--     Applications:                apps
--     Documentation:               NO
--     Non-free algorithms:         NO
-- 
--   GUI: 
--     QT:                          YES (ver 5.5.1)
--       QT OpenGL support:         YES (Qt5::OpenGL 5.5.1)
--     GTK+:                        NO
--     OpenGL support:              YES (/usr/lib/aarch64-linux-gnu/libGLU.so /usr/lib/aarch64-linux-gnu/libGL.so)
--     VTK support:                 NO
-- 
--   Media I/O: 
--     ZLib:                        /usr/lib/aarch64-linux-gnu/libz.so (ver 1.2.8)
--     JPEG:                        /usr/lib/aarch64-linux-gnu/libjpeg.so (ver )
--     WEBP:                        build (ver encoder: 0x020e)
--     PNG:                         /usr/lib/aarch64-linux-gnu/libpng.so (ver 1.2.54)
--     TIFF:                        /usr/lib/aarch64-linux-gnu/libtiff.so (ver 42 / 4.0.6)
--     JPEG 2000:                   /usr/lib/aarch64-linux-gnu/libjasper.so (ver 1.900.1)
--     OpenEXR:                     build (ver 1.7.1)
-- 
--   Video I/O:
--     DC1394:                      YES (ver 2.2.4)
--     FFMPEG:                      YES
--       avcodec:                   YES (ver 56.60.100)
--       avformat:                  YES (ver 56.40.101)
--       avutil:                    YES (ver 54.31.100)
--       swscale:                   YES (ver 3.1.101)
--       avresample:                NO
--     GStreamer:                   
--       base:                      YES (ver 1.8.3)
--       video:                     YES (ver 1.8.3)
--       app:                       YES (ver 1.8.3)
--       riff:                      YES (ver 1.8.3)
--       pbutils:                   YES (ver 1.8.3)
--     libv4l/libv4l2:              1.10.0 / 1.10.0
--     v4l/v4l2:                    linux/videodev2.h
--     gPhoto2:                     NO
-- 
--   Parallel framework:            pthreads
-- 
--   Trace:                         YES (built-in)
-- 
--   Other third-party libraries:
--     Lapack:                      YES (/usr/lib/liblapack.so /usr/lib/libcblas.so /usr/lib/libatlas.so)
--     Eigen:                       YES (ver 3.2.92)
--     Custom HAL:                  YES (carotene (ver 0.0.1))
-- 
--   NVIDIA CUDA:                   YES (ver 9.0, CUFFT CUBLAS FAST_MATH)
--     NVIDIA GPU arch:             62
--     NVIDIA PTX archs:
-- 
--   OpenCL:                        YES (no extra features)
--     Include path:                /home/nvidia/opencv3.4.0/opencv-3.4.0/3rdparty/include/opencl/1.2
--     Link libraries:              Dynamic load
-- 
--   Python 3:
--     Interpreter:                 /usr/bin/python3 (ver 3.5.2)
--     Libraries:                   /usr/lib/aarch64-linux-gnu/libpython3.5m.so (ver 3.5.2)
--     numpy:                       /usr/local/lib/python3.5/dist-packages/numpy/core/include (ver 1.15.4)
--     packages path:               lib/python3.5/dist-packages
-- 
--   Python (for build):            /usr/bin/python2.7
-- 
--   Java:
--     ant:                         NO
--     JNI:                         NO
--     Java wrappers:               NO
--     Java tests:                  NO
-- 
--   Matlab:                        NO
-- 
--   Install to:                    /usr/local
-- -----------------------------------------------------------------

安装完之后验证一下

$ python3 -c 'import cv2; print(cv2.__version__)'
3.4.0

2 yolov3

首先下载源码

$ cd ~/project 
$ git clone https://github.com/pjreddie/darknet yolov3
$ cd yolov3

修改Makefile

将前三个设置为1,并将ARCH改为如下

GPU=1
CUDNN=1
OPENCV=1
......
# Note that CUDA architecture of TX2 is “62”, while TX1 “53”.
ARCH= -gencode arch=compute_53,code=[sm_53,compute_53] \
      -gencode arch=compute_62,code=[sm_62,compute_62]

然后运行

make -j4

即可编译生成darket可执行文件

3 图片测试

首先下载预训练模型

wget https://pjreddie.com/media/files/yolov3.weights 
wget https://pjreddie.com/media/files/yolov3-tiny.weights 

修改配置文件cfg/yolov3.cfg,将前两行打开,关闭training中的batch和subdivisions,否则会报内存错误

[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=16

测试

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
./darknet detect cfg/yolov3-tiny.cfg yolov3-tiny.weights data/dog.jpg

测试完成会出现如下信息,并弹出检测图片


layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32  0.299 BFLOPs
    1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64  1.595 BFLOPs
    .......
  105 conv    255  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 255  0.353 BFLOPs
  106 detection
truth_thresh: Using default '1.000000'
Loading weights from yolov3.weights...Done!
data/dog.jpg: Predicted in 0.029329 seconds.
dog: 99%
truck: 93%
bicycle: 99%

4 视频测试

下载一个测试视频traffic.mp4,

### set TX2 to max performance mode
$ sudo nvpmodel -m 0
$ sudo ~/jetson_clocks.sh
### download the pre-trained weights and run YOLOv3
$ wget https://pjreddie.com/media/files/yolov3.weights
$ ./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights traffic.mp4

如果要读取USB摄像头测试,运行下边的代码,-c 1表示/dev/video0

$ ./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 0

实际测试时,使用yolov3.weights在TX2上测试时,推理速度只有3~3.3 FPS,还达不到实时的效果

 

你可能感兴趣的:(Python,OpenCV,人工智能)