GCN现有变体汇总(应用篇)
Mix Hop(高阶多跳的图特征)融合
文献:
ICML_2019
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
AAAI_20: Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting
2. 两路并行,同时对节点和边的关系建模,形成以边为中心的图网络和以节点为中心的图网络
NodeNet
EdgeNet
AAAI_20: Multi-Range Attentive Bicomponent Graph Convolutional Network for Traffic Forecasting (同上)
TKDE_20: Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
IJCAI_19: MR-GNN: Multi-Resolution and Dual Graph Neural Network for Predicting Structured Entity Interactions
两路并行 将GCN的卷积结果和S-LSTM(summary)和I-LSTM(interaction)
1. weighted graph convolution
2. graph-gather layers 经过一层全连接再加起来得到全图的全部信息(和)是表示graph-level的信息
3. 对gt做 graph-state的S-LSTM 也就是对summary graph-gate做 graph-level的LSTM
4. 对gXt和gYt进行连接,再对其做LSTM 就是interaction
5. 最后把得到的结果都concantenate起来 经过全连接 得到1*k的向量 k表示标注交集的label数。
这个工作得到的都是graph-level的结果,我们也可以拓展到node-level去
3. Multi-step Prediction: GCN+Seq2Seq
IJCAI_19: STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting
IJCAI_19: GSTNet: Global Spatial-Temporal Network for Traffic Flow Prediction
STSGCN https://github.com/Davidham3/STSGCN AAAI_20 【Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting】
It is designed for spatio-temporal network data forecasting, which captures complex localized spatial-temporal correlations and heterogeneity with a Spatial-Temporal Synchronous Graph Convolutional Network.
4. 异质GCN:Hetero-GCN
KDD_19: Heterogeneous Graph Neural Network
AAAI_20: An Attention-based Graph Neural Network for Heterogeneous Structural Learning
推荐系统里建模异质网络IntentGC
IntentGC: a Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation
vector-wise/bit-wise
5. MaskGCN:
IJCAI_19: STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems
IJCAI_19: Masked Graph Convolutional Network
Network embedding就是通过训练特征表示representation来使得图中相邻的节点表征尽可能小,而较远的节点表征尽可能大。或者使得特征表示满足其他的task相关的要求。
Network embedding aims to represent graph nodes in a low dimensional space where the network structure and properties are preserved.