在未全面的了解redis配置之前,单纯的使用redis就可以达到我的代码实现目的,但是不能很全面的去掌握它。为了更深入的理解并使用redis, 学习redis配置必不可少。
使用 whereis 命令,查找 redis.conf位置
使用 find 命令 ,查找 redis.conf位置
使用 ps 命令查看 pid ,ls 命令查看位置
因启动多个redis,所以会出现上述多个位置。
# Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
daemonize no
# 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
pidfile /var/run/redis.pid
# 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,
因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字
port 6379
# 绑定的主机地址
bind 127.0.0.1
# 当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
timeout 300
# 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,
默认为verbose
loglevel verbose
# 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志
记录方式为标准输出,则日志将会发送给/dev/null
logfile stdout
# 设置数据库的数量,默认数据库为0,可以使用SELECT 命令在连接上指定数据库id
databases 16
# 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
save
Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
# 分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
# 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,
可以关闭该选项,但会导致数据库文件变的巨大
rdbcompression yes
# 指定本地数据库文件名,默认值为dump.rdb
dbfilename dump.rdb
# 指定本地数据库存放目录
dir ./
# 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
slaveof
# 当master服务设置了密码保护时,slav服务连接master的密码
masterauth
# 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH 命令提供密码,默认关闭
requirepass foobared
# 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,
如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端
返回max number of clients reached错误信息
maxclients 128
# 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,
当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,
Value会存放在swap区
maxmemory
# 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。
因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendonly no
# 指定更新日志文件名,默认为appendonly.aof
appendfilename appendonly.aof
# 指定更新日志条件,共有3个可选值:
no:表示等操作系统进行数据缓存同步到磁盘(快)
always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
everysec:表示每秒同步一次(折衷,默认值)
appendfsync everysec
# 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,
访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
vm-enabled no
# 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-swap-file /tmp/redis.swap
# 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),
也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-max-memory 0
# Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,
vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;
如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
vm-page-size 32
# 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
vm-pages 134217728
# 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,
可能会造成比较长时间的延迟。默认值为4
vm-max-threads 4
# 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
glueoutputbuf yes
# 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-entries 64
hash-max-zipmap-value 512
# 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)
activerehashing yes
# 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
include /path/to/local.conf
-----------------------------------------------------------------------------
# daemonize no 默认情况下, redis 不是在后台运行的,如果需要在后台运行,把该项的值更改为 yes
daemonize yes
# 当 redis 在后台运行的时候, Redis 默认会把 pid 文件放在 /var/run/redis.pid ,你可以配置到其他地址。
# 当运行多个 redis 服务时,需要指定不同的 pid 文件和端口
pidfile /var/run/redis_6379.pid
# 指定 redis 运行的端口,默认是 6379
port 6379
# 在高并发的环境中,为避免慢客户端的连接问题,需要设置一个高速后台日志
tcp-backlog 511
# 指定 redis 只接收来自于该 IP 地址的请求,如果不进行设置,那么将处理所有请求
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1
# 设置客户端连接时的超时时间,单位为秒。当客户端在这段时间内没有发出任何指令,那么关闭该连接
# 0 是关闭此设置
timeout 0
# TCP keepalive
# 在 Linux 上,指定值(秒)用于发送 ACKs 的时间。注意关闭连接需要双倍的时间。默认为 0 。
tcp-keepalive 0
# 指定日志记录级别,生产环境推荐 notice
# Redis 总共支持四个级别: debug 、 verbose 、 notice 、 warning ,默认为 verbose
# debug 记录很多信息,用于开发和测试
# varbose 有用的信息,不像 debug 会记录那么多
# notice 普通的 verbose ,常用于生产环境
# warning 只有非常重要或者严重的信息会记录到日志
loglevel notice
# 配置 log 文件地址
# 默认值为 stdout ,标准输出,若后台模式会输出到 /dev/null 。
logfile /var/log/redis/redis.log
# 可用数据库数
# 默认值为 16 ,默认数据库为 0 ,数据库范围在 0- ( database-1 )之间
databases 16
################################ 快照#################################
# 保存数据到磁盘,格式如下 :
# save
# 指出在多长时间内,有多少次更新操作,就将数据同步到数据文件 rdb 。
# 相当于条件触发抓取快照,这个可以多个条件配合
# 比如默认配置文件中的设置,就设置了三个条件
# save 900 1 900 秒内至少有 1 个 key 被改变
# save 300 10 300 秒内至少有 300 个 key 被改变
# save 60 10000 60 秒内至少有 10000 个 key 被改变
save 900 1
save 300 10
save 60 10000
# 后台存储错误停止写。
stop-writes-on-bgsave-error yes
# 存储至本地数据库时(持久化到 rdb 文件)是否压缩数据,默认为 yes
rdbcompression yes
# 对rdb数据进行校验,耗费CPU资源,默认为yes
rdbchecksum yes
# 本地持久化数据库文件名,默认值为 dump.rdb
dbfilename dump.rdb
# 工作目录
# 数据库镜像备份的文件放置的路径。
# 这里的路径跟文件名要分开配置是因为 redis 在进行备份时,先会将当前数据库的状态写入到一个临时文件中,等备份完成,
# 再把该该临时文件替换为上面所指定的文件,而这里的临时文件和上面所配置的备份文件都会放在这个指定的路径当中。
# AOF文件也会存放在这个目录下面
# 注意这里必须制定一个目录而不是文件
dir /var/lib/redis-server/
################################# 复制 #################################
# 主从复制 . 设置该数据库为其他数据库的从数据库 .
# 设置当本机为 slav 服务时,设置 master 服务的 IP 地址及端口,在 Redis 启动时,它会自动从 master 进行数据同步
# slaveof
# 当 master 服务设置了密码保护时 ( 用 requirepass 制定的密码 )
# slave 服务连接 master 的密码
# masterauth
# 当从库同主机失去连接或者复制正在进行,从机库有两种运行方式:
# 1) 如果 slave-serve-stale-data 设置为 yes( 默认设置 ) ,从库会继续响应客户端的请求
# 2) 如果 slave-serve-stale-data 是指为 no ,出去 INFO 和 SLAVOF 命令之外的任何请求都会返回一个
# 错误 "SYNC with master in progress"
slave-serve-stale-data yes
# 配置 slave 实例是否接受写。写 slave 对存储短暂数据(在同 master 数据同步后可以很容易地被删除)是有用的,但未配置的情况下,客户端写可能会发送问题。
# 从 Redis2.6 后,默认 slave 为 read-only
slaveread-only yes
# 从库会按照一个时间间隔向主库发送 PINGs. 可以通过 repl-ping-slave-period 设置这个时间间隔,默认是 10 秒
# repl-ping-slave-period 10
# repl-timeout 设置主库批量数据传输时间或者 ping 回复时间间隔,默认值是 60 秒
# 一定要确保 repl-timeout 大于 repl-ping-slave-period
# repl-timeout 60
# 在 slave socket 的 SYNC 后禁用 TCP_NODELAY
# 如果选择“ yes ” ,Redis 将使用一个较小的数字 TCP 数据包和更少的带宽将数据发送到 slave , 但是这可能导致数据发送到 slave 端会有延迟 , 如果是 Linux kernel 的默认配置,会达到 40 毫秒
# 如果选择 "no" ,则发送数据到 slave 端的延迟会降低,但将使用更多的带宽用于复制 .
repl-disable-tcp-nodelay no
# 设置复制的后台日志大小。
# 复制的后台日志越大, slave 断开连接及后来可能执行部分复制花的时间就越长。
# 后台日志在至少有一个 slave 连接时,仅仅分配一次。
# repl-backlog-size 1mb
# 在 master 不再连接 slave 后,后台日志将被释放。下面的配置定义从最后一个 slave 断开连接后需要释放的时间(秒)。
# 0 意味着从不释放后台日志
# repl-backlog-ttl 3600
# 如果 master 不能再正常工作,那么会在多个 slave 中,选择优先值最小的一个 slave 提升为 master ,优先值为 0 表示不能提升为 master 。
slave-priority 100
# 如果少于 N 个 slave 连接,且延迟时间 <=M 秒,则 master 可配置停止接受写操作。
# 例如需要至少 3 个 slave 连接,且延迟 <=10 秒的配置:
# min-slaves-to-write 3
# min-slaves-max-lag 10
# 设置 0 为禁用
# 默认 min-slaves-to-write 为 0 (禁用), min-slaves-max-lag 为 10
################################## 安全 ###################################
# 设置客户端连接后进行任何其他指定前需要使用的密码。
# 警告:因为 redis 速度相当快,所以在一台比较好的服务器下,一个外部的用户可以在一秒钟进行 150K 次的密码尝试,这意味着你需要指定非常非常强大的密码来防止暴力破解
# requirepass foobared
# 命令重命名 .
# 在一个共享环境下可以重命名相对危险的命令。比如把 CONFIG 重名为一个不容易猜测的字符。
# 举例 :
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
# 如果想删除一个命令,直接把它重命名为一个空字符 "" 即可,如下:
# rename-command CONFIG ""
################################### 约束###################################
# 设置同一时间最大客户端连接数,默认无限制,
# Redis 可以同时打开的客户端连接数为 Redis 进程可以打开的最大文件描述符数,
# 如果设置 maxclients 0 ,表示不作限制。
# 当客户端连接数到达限制时, Redis 会关闭新的连接并向客户端返回 max number of clients reached 错误信息
# maxclients 10000
# 指定 Redis 最大内存限制, Redis 在启动时会把数据加载到内存中,达到最大内存后, Redis 会按照清除策略尝试清除已到期的 Key
# 如果 Redis 依照策略清除后无法提供足够空间,或者策略设置为 ”noeviction” ,则使用更多空间的命令将会报错,例如 SET, LPUSH 等。但仍然可以进行读取操作
# 注意: Redis 新的 vm 机制,会把 Key 存放内存, Value 会存放在 swap 区
# 该选项对 LRU 策略很有用。
# maxmemory 的设置比较适合于把 redis 当作于类似 memcached 的缓存来使用,而不适合当做一个真实的 DB 。
# 当把 Redis 当做一个真实的数据库使用的时候,内存使用将是一个很大的开销
# maxmemory
# 当内存达到最大值的时候 Redis 会选择删除哪些数据?有五种方式可供选择
# volatile-lru -> 利用 LRU 算法移除设置过过期时间的 key (LRU: 最近使用 Least RecentlyUsed )
# allkeys-lru -> 利用 LRU 算法移除任何 key
# volatile-random -> 移除设置过过期时间的随机 key
# allkeys->random -> remove a randomkey, any key
# volatile-ttl -> 移除即将过期的 key(minor TTL)
# noeviction -> 不移除任何可以,只是返回一个写错误
# 注意:对于上面的策略,如果没有合适的 key 可以移除,当写的时候 Redis 会返回一个错误
# 默认是 : volatile-lru
# maxmemory-policy volatile-lru
# LRU 和 minimal TTL 算法都不是精准的算法,但是相对精确的算法 ( 为了节省内存 ) ,随意你可以选择样本大小进行检测。
# Redis 默认的灰选择 3 个样本进行检测,你可以通过 maxmemory-samples 进行设置
# maxmemory-samples 3
############################## AOF###############################
# 默认情况下, redis 会在后台异步的把数据库镜像备份到磁盘,但是该备份是非常耗时的,而且备份也不能很频繁,如果发生诸如拉闸限电、拔插头等状况,那么将造成比较大范围的数据丢失。
# 所以 redis 提供了另外一种更加高效的数据库备份及灾难恢复方式。
# 开启 append only 模式之后, redis 会把所接收到的每一次写操作请求都追加到 appendonly.aof 文件中,当 redis 重新启动时,会从该文件恢复出之前的状态。
# 但是这样会造成 appendonly.aof 文件过大,所以 redis 还支持了 BGREWRITEAOF 指令,对 appendonly.aof 进行重新整理。
# 你可以同时开启 asynchronous dumps 和 AOF
appendonly no
# AOF 文件名称 ( 默认 : "appendonly.aof")
# appendfilename appendonly.aof
# Redis 支持三种同步 AOF 文件的策略 :
# no: 不进行同步,系统去操作 . Faster.
# always: always 表示每次有写操作都进行同步 . Slow, Safest.
# everysec: 表示对写操作进行累积,每秒同步一次 . Compromise.
# 默认是 "everysec" ,按照速度和安全折中这是最好的。
# 如果想让 Redis 能更高效的运行,你也可以设置为 "no" ,让操作系统决定什么时候去执行
# 或者相反想让数据更安全你也可以设置为 "always"
# 如果不确定就用 "everysec".
# appendfsync always
appendfsync everysec
# appendfsync no
# AOF 策略设置为 always 或者 everysec 时,后台处理进程 ( 后台保存或者 AOF 日志重写 ) 会执行大量的 I/O 操作
# 在某些 Linux 配置中会阻止过长的 fsync() 请求。注意现在没有任何修复,即使 fsync 在另外一个线程进行处理
# 为了减缓这个问题,可以设置下面这个参数 no-appendfsync-on-rewrite
no-appendfsync-on-rewrite no
# AOF 自动重写
# 当 AOF 文件增长到一定大小的时候 Redis 能够调用 BGREWRITEAOF 对日志文件进行重写
# 它是这样工作的: Redis 会记住上次进行些日志后文件的大小 ( 如果从开机以来还没进行过重写,那日子大小在开机的时候确定 )
# 基础大小会同现在的大小进行比较。如果现在的大小比基础大小大制定的百分比,重写功能将启动
# 同时需要指定一个最小大小用于 AOF 重写,这个用于阻止即使文件很小但是增长幅度很大也去重写 AOF 文件的情况
# 设置percentage 为 0 就关闭这个特性
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
################################ LUASCRIPTING #############################
# 一个 Lua 脚本最长的执行时间为 5000 毫秒( 5 秒),如果为 0 或负数表示无限执行时间。
lua-time-limit 5000
################################LOW LOG################################
# Redis Slow Log 记录超过特定执行时间的命令。执行时间不包括 I/O 计算比如连接客户端,返回结果等,只是命令执行时间
# 可以通过两个参数设置 slow log :一个是告诉 Redis 执行超过多少时间被记录的参数 slowlog-log-slower-than( 微妙 ) ,
# 另一个是 slow log 的长度。当一个新命令被记录的时候最早的命令将被从队列中移除
# 下面的时间以微妙为单位,因此 1000000 代表一秒。
# 注意指定一个负数将关闭慢日志,而设置为 0 将强制每个命令都会记录
slowlog-log-slower-than 10000
# 对日志长度没有限制,只是要注意它会消耗内存
# 可以通过 SLOWLOG RESET 回收被慢日志消耗的内存
# 推荐使用默认值 128 ,当慢日志超过 128 时,最先进入队列的记录会被踢出
slowlog-max-len 128
################################ 事件通知 #############################
# 当事件发生时, Redis 可以通知 Pub/Sub 客户端。
# 可以在下表中选择 Redis 要通知的事件类型。事件类型由单个字符来标识:
# K Keyspace 事件,以 _keyspace@_ 的前缀方式发布
# E Keyevent 事件,以 _keysevent@_ 的前缀方式发布
# g 通用事件(不指定类型),像 DEL, EXPIRE, RENAME, …
# $ String 命令
# s Set 命令
# h Hash 命令
# z 有序集合命令
# x 过期事件(每次 key 过期时生成)
# e 清除事件(当 key 在内存被清除时生成)
# A g$lshzxe 的别称,因此 ”AKE” 意味着所有的事件
# notify-keyspace-events 带一个由 0 到多个字符组成的字符串参数。空字符串意思是通知被禁用。
# 例子:启用 list 和通用事件:
# notify-keyspace-events Elg
# 默认所用的通知被禁用,因为用户通常不需要改特性,并且该特性会有性能损耗。
# 注意如果你不指定至少 K 或 E 之一,不会发送任何事件。
notify-keyspace-events “”
############################## 高级配置 ###############################
# 当 hash 中包含超过指定元素个数并且最大的元素没有超过临界时,
# hash 将以一种特殊的编码方式(大大减少内存使用)来存储,这里可以设置这两个临界值
# Redis Hash 对应 Value 内部实际就是一个 HashMap ,实际这里会有 2 种不同实现,
# 这个 Hash 的成员比较少时 Redis 为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的 HashMap 结构,对应的 valueredisObject 的 encoding 为 zipmap,
# 当成员数量增大时会自动转成真正的 HashMap, 此时 encoding 为 ht 。
hash-max-zipmap-entries 512
hash-max-zipmap-value 64
# 和 Hash 一样,多个小的 list 以特定的方式编码来节省空间。
# list 数据类型节点值大小小于多少字节会采用紧凑存储格式。
list-max-ziplist-entries 512
list-max-ziplist-value 64
# set 数据类型内部数据如果全部是数值型,且包含多少节点以下会采用紧凑格式存储。
set-max-intset-entries 512
# 和 hashe 和 list 一样 , 排序的 set 在指定的长度内以指定编码方式存储以节省空间
# zsort 数据类型节点值大小小于多少字节会采用紧凑存储格式。
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
# Redis 将在每 100 毫秒时使用 1 毫秒的 CPU 时间来对 redis 的 hash 表进行重新 hash ,可以降低内存的使用
# 当你的使用场景中,有非常严格的实时性需要,不能够接受 Redis 时不时的对请求有 2 毫秒的延迟的话,把这项配置为 no 。
# 如果没有这么严格的实时性要求,可以设置为 yes ,以便能够尽可能快的释放内存
activerehashing yes
# 客户端的输出缓冲区的限制,因为某种原因客户端从服务器读取数据的速度不够快,
# 可用于强制断开连接(一个常见的原因是一个发布 / 订阅客户端消费消息的速度无法赶上生产它们的速度)。
# 可以三种不同客户端的方式进行设置:
# normal -> 正常客户端
# slave -> slave 和 MONITOR 客户端
# pubsub -> 至少订阅了一个 pubsub channel 或 pattern 的客户端
# 每个 client-output-buffer-limit 语法 :
# client-output-buffer-limit
# 一旦达到硬限制客户端会立即断开,或者达到软限制并保持达成的指定秒数(连续)。
# 例如,如果硬限制为 32 兆字节和软限制为 16 兆字节 /10 秒,客户端将会立即断开
# 如果输出缓冲区的大小达到 32 兆字节,客户端达到 16 兆字节和连续超过了限制 10 秒,也将断开连接。
# 默认 normal 客户端不做限制,因为他们在一个请求后未要求时(以推的方式)不接收数据,
# 只有异步客户端可能会出现请求数据的速度比它可以读取的速度快的场景。
# 把硬限制和软限制都设置为 0 来禁用该特性
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb60
client-output-buffer-limit pubsub 32mb 8mb60
# Redis 调用内部函数来执行许多后台任务,如关闭客户端超时的连接,清除过期的 Key ,等等。
# 不是所有的任务都以相同的频率执行,但 Redis 依照指定的“ Hz ”值来执行检查任务。
# 默认情况下,“ Hz ”的被设定为 10 。
# 提高该值将在 Redis 空闲时使用更多的 CPU 时,但同时当有多个 key 同时到期会使 Redis 的反应更灵敏,以及超时可以更精确地处理。
# 范围是 1 到 500 之间,但是值超过 100 通常不是一个好主意。
# 大多数用户应该使用 10 这个预设值,只有在非常低的延迟的情况下有必要提高最大到 100 。
hz 10
# 当一个子节点重写 AOF 文件时,如果启用下面的选项,则文件每生成 32M 数据进行同步。
aof-rewrite-incremental-fsync yes
通过redis-cli命令行界面访问到Redis服务器,然后使用 info 命令获取所有与Redis服务相关的信息。通过这些信息来分析文章后面提到的一些性能指标。
info命令(info all|default 或 Info 指定项)输出的数据可分为10个类别,分别是:
1.server服务器信息
redis_version : Redis 服务器版本
redis_git_sha1 : Git SHA1
redis_git_dirty : Git dirty flag
os : Redis 服务器的宿主操作系统
arch_bits : 架构(32 或 64 位)
multiplexing_api : Redis 所使用的事件处理机制
gcc_version : 编译 Redis 时所使用的 GCC 版本
process_id : 服务器进程的 PID
run_id : Redis 服务器的随机标识符(用于 Sentinel 和集群)
tcp_port : TCP/IP 监听端口
uptime_in_seconds : 自 Redis 服务器启动以来,经过的秒数
uptime_in_days : 自 Redis 服务器启动以来,经过的天数
lru_clock : 以分钟为单位进行自增的时钟,用于 LRU 管理
2.clients已连接客户端信息
connected_clients : 已连接客户端的数量(不包括通过从属服务器连接的客户端)
client_longest_output_list : 当前连接的客户端当中,最长的输出列表
client_longest_input_buf : 当前连接的客户端当中,最大输入缓存
blocked_clients : 正在等待阻塞命令(BLPOP、BRPOP、BRPOPLPUSH)的客户端的数量
3.memory内存信息
used_memory : 由 Redis 分配器分配的内存总量,以字节(byte)为单位
used_memory_human : 以人类可读的格式返回 Redis 分配的内存总量
used_memory_rss : 从操作系统的角度,返回 Redis 已分配的内存总量(俗称常驻集大小)。这个值和top 、 ps 等命令的输出一致。
used_memory_peak : Redis 的内存消耗峰值(以字节为单位)
used_memory_peak_human : 以人类可读的格式返回 Redis 的内存消耗峰值
used_memory_lua : Lua 引擎所使用的内存大小(以字节为单位)
mem_fragmentation_ratio :used_memory_rss 和 used_memory 之间的比率
mem_allocator : 在编译时指定的, Redis 所使用的内存分配器。可以是 libc 、 jemalloc 或者 tcmalloc 。
在理想情况下, used_memory_rss 的值应该只比used_memory 稍微高一点儿。
当 rss > used ,且两者的值相差较大时,表示存在(内部或外部的)内存碎片。
内存碎片的比率可以通过 mem_fragmentation_ratio 的值看出。
当 used > rss 时,表示 Redis 的部分内存被操作系统换出到交换空间了,在这种情况下,操作可能会产生明显的延迟。
Because Redis does not have control over how its allocations are mapped to memory pages, highused_memory_rss is often the result of a spike in memory usage.
当 Redis 释放内存时,分配器可能会,也可能不会,将内存返还给操作系统。
如果 Redis 释放了内存,却没有将内存返还给操作系统,那么 used_memory 的值可能和操作系统显示的 Redis 内存占用并不一致。
查看 used_memory_peak 的值可以验证这种情况是否发生。
4、persistence:RDB和AOF相关持久化信息
loading:0 一个标志值,记录了服务器是否正在载入持久化文件
rdb_changes_since_last_save:0 距离最后一次成功创建持久化文件之后,改变了多少个键值
rdb_bgsave_in_progress:0 一个标志值,记录服务器是否正在创建RDB文件
rdb_last_save_time:1338011402 最近一次成功创建RDB文件的UNIX时间
rdb_last_bgsave_status:ok 一个标志值,记录了最后一次创建RDB文件的结果是成功还是失败
rdb_last_bgsave_time_sec:-1 记录最后一次创建RDB文件耗费的秒数
rdb_current_bgsave_time_sec:-1 如果服务器正在创建RDB文件,那么这个值记录的就是当前的创建 RDB操作已经耗费了多长时间(单位为秒)
aof_enabled:0 一个标志值,记录了AOF是否处于打开状态
aof_rewrite_in_progress:0 一个标志值,记录了服务器是否正在创建AOF文件
aof_rewrite_scheduled:0 一个标志值,记录了RDB文件创建完之后,是否需要执行预约的AOF重写操作
aof_last_rewrite_time_sec:-1 记录了最后一次AOF重写操作的耗时
aof_current_rewrite_time_sec:-1 如果服务器正在进行AOF重写操作,那么这个值记录的就是当前重写操作已经耗费的时间(单位是秒)
aof_last_bgrewrite_status:ok 一个标志值,记录了最后一次重写AOF文件的结果是成功还是失败
5、stats:一般统计信息
total_connections_received:1 服务器已经接受的连接请求数量
total_commands_processed:0 服务器已经执行的命令数量
instantaneous_ops_per_sec:0 服务器每秒中执行的命令数量
rejected_connections:0 因为最大客户端数量限制而被拒绝的连接请求数量
expired_keys:0 因为过期而被自动删除的数据库键数量
evicted_keys:0 因为最大内存容量限制而被驱逐(evict)的键数量
keyspace_hits:0 查找数据库键成功的次数
keyspace_misses:0 查找数据库键失败的次数
pubsub_channels:0 目前被订阅的频道数量
pubsub_patterns:0 目前被订阅的模式数量
latest_fork_usec:0 最近一次fork()操作耗费的时间(毫秒)
6、replication:主从复制信息,master上显示的信息
role:master #实例的角色,是master or slave
connected_slaves:1 #连接的slave实例个数
slave0:ip=192.168.64.104,port=9021,state=online,offset=6713173004,lag=0 #lag从库多少秒未向主库发送REPLCONF命令
master_repl_offset:6713173145 #主从同步偏移量,此值如果和上面的offset相同说明主从一致没延迟
repl_backlog_active:1 #复制积压缓冲区是否开启
repl_backlog_size:134217728 #复制积压缓冲大小
repl_backlog_first_byte_offset:6578955418 #复制缓冲区里偏移量的大小
repl_backlog_histlen:134217728 #此值等于 master_repl_offset - repl_backlog_first_byte_offset,该值不会超过repl_backlog_size的大小
6、replication:主从复制信息,slave上显示的信息
role:slave #实例的角色,是master or slave
master_host:192.168.64.102 #此节点对应的master的ip
master_port:9021 #此节点对应的master的port
master_link_status:up #slave端可查看它与master之间同步状态,当复制断开后表示down
master_last_io_seconds_ago:0 #主库多少秒未发送数据到从库?
master_sync_in_progress:0 #从服务器是否在与主服务器进行同步
slave_repl_offset:6713173818 #slave复制偏移量
slave_priority:100 #slave优先级
slave_read_only:1 #从库是否设置只读
connected_slaves:0 #连接的slave实例个数
master_repl_offset:0
repl_backlog_active:0 #复制积压缓冲区是否开启
repl_backlog_size:134217728 #复制积压缓冲大小
repl_backlog_first_byte_offset:0 #复制缓冲区里偏移量的大小
repl_backlog_histlen:0 #此值等于 master_repl_offset - repl_backlog_first_byte_offset,该值不会超过repl_backlog_size的大小
7、cpu:cput计算量统计信息
used_cpu_sys:0.03 Redis服务器耗费的系统CPU
used_cpu_user:0.01 Redis服务器耗费的用户CPU
used_cpu_sys_children:0.00 Redis后台进程耗费的系统CPU
used_cpu_user_children:0.00 Redis后台进程耗费的用户CPU
8、commandstats:redis命令统计信息
cmdstat_get:calls=1664657469,usec=8266063320,usec_per_call=4.97 #call每个命令执行次数,usec总共消耗的CPU时长(单位微秒),平均每次消耗的CPU时长(单位微秒)
9、cluster:redis集群信息
cluster_enabled:1 #实例是否启用集群模式
10、keyspace:数据库相关的统计信息
db0:keys=2,expires=0,avg_ttl=0 0号数据库有2个键、已经被删除的过期键数量为0、以及带有生存期的key的数量
1.redis-benchmark
redis基准信息,redis服务器性能检测
redis-benchmark -h localhost -p 6379 -c 100 -n 100000
100个并发连接,100000个请求,检测host为localhost 端口为6379的redis服务器性能
End