split_label.py的作用是将每一个标记框切分成宽为16的矩形框并且resize输入图像大小
一,数据切分效果
原始:
需要达到的效果:
二,代码
import os
import sys
import cv2 as cv
import numpy as np
from tqdm import tqdm
sys.path.append(os.getcwd())
print(os.getcwd())
#from utils.prepare.utils import orderConvex, shrink_poly
#sys.path.append(os.path.join(os.getcwd(), 'utils/prepare'))
from utils import orderConvex, shrink_poly
DATA_FOLDER = "/home/jun/text-detection-ctpn/data/my_data"
OUTPUT = "data/dataset/mlt"
MAX_LEN = 1200
MIN_LEN = 600
im_fns = os.listdir(os.path.join(DATA_FOLDER, "image"))
im_fns.sort()
if not os.path.exists(os.path.join(OUTPUT, "image")):
os.makedirs(os.path.join(OUTPUT, "image"))
if not os.path.exists(os.path.join(OUTPUT, "label")):
os.makedirs(os.path.join(OUTPUT, "label"))
for im_fn in tqdm(im_fns):
try:
_, fn = os.path.split(im_fn)
bfn, ext = os.path.splitext(fn)
if ext.lower() not in ['.jpg', '.png']:
continue
gt_path = os.path.join(DATA_FOLDER, "label", bfn + '.txt')
img_path = os.path.join(DATA_FOLDER, "image", im_fn)
img = cv.imread(img_path)
img_size = img.shape
im_size_min = np.min(img_size[0:2])
im_size_max = np.max(img_size[0:2])
im_scale = float(600) / float(im_size_min)
if np.round(im_scale * im_size_max) > 1200:
im_scale = float(1200) / float(im_size_max)
new_h = int(img_size[0] * im_scale)
new_w = int(img_size[1] * im_scale)
new_h = new_h if new_h // 16 == 0 else (new_h // 16 + 1) * 16
new_w = new_w if new_w // 16 == 0 else (new_w // 16 + 1) * 16
re_im = cv.resize(img, (new_w, new_h), interpolation=cv.INTER_LINEAR)
re_size = re_im.shape
polys = []
with open(gt_path, 'r') as f:
lines = f.readlines()
for line in lines:
splitted_line = line.strip().lower().split(',')
x1, y1, x2, y2, x3, y3, x4, y4 = map(float, splitted_line[:8])
poly = np.array([x1, y1, x2, y2, x3, y3, x4, y4]).reshape([4, 2])
poly[:, 0] = poly[:, 0] / img_size[1] * re_size[1]
poly[:, 1] = poly[:, 1] / img_size[0] * re_size[0]
poly = orderConvex(poly)
polys.append(poly)
# cv.polylines(re_im, [poly.astype(np.int32).reshape((-1, 1, 2))], True,color=(0, 255, 0), thickness=2)
res_polys = []
for poly in polys:
# delete polys with width less than 10 pixel
if np.linalg.norm(poly[0] - poly[1]) < 10 or np.linalg.norm(poly[3] - poly[0]) < 10:
continue
res = shrink_poly(poly)
# for p in res:
# cv.polylines(re_im, [p.astype(np.int32).reshape((-1, 1, 2))], True, color=(0, 255, 0), thickness=1)
res = res.reshape([-1, 4, 2])
for r in res:
x_min = np.min(r[:, 0])
y_min = np.min(r[:, 1])
x_max = np.max(r[:, 0])
y_max = np.max(r[:, 1])
res_polys.append([x_min, y_min, x_max, y_max])
cv.imwrite(os.path.join(OUTPUT, "image", fn), re_im)
with open(os.path.join(OUTPUT, "label", bfn) + ".txt", "w") as f:
for p in res_polys:
line = ",".join(str(p[i]) for i in range(4))
f.writelines(line + "\r\n")
# for p in res_polys:
# cv.rectangle(re_im,(p[0],p[1]),(p[2],p[3]),color=(0,0,255),thickness=1)
# cv.imshow("demo",re_im)
# cv.waitKey(0)
except:
print("Error processing {}".format(im_fn))
备注:1.DATA_FOLDER=原始数据的存放路径(包含image和label文件夹)
2.gt_path = os.path.join(DATA_FOLDER, “label”, bfn + ‘.txt’)这一行中我把’gt_'删除了,不删除的话.txt标签名字和.jpg的图像名字对应不上。