统计相关系数(1)——Pearson(皮尔逊)相关系数及MATLAB实现

统计相关系数简介

 

 

由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数。

 

相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。

 

如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:

(1)、当相关系数为0时,X和Y两变量无关系。

(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。

(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。

 

相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

通常情况下通过以下取值范围判断变量的相关强度:
相关系数     0.8-1.0     极强相关
                 0.6-0.8     强相关
                 0.4-0.6     中等程度相关
                 0.2-0.4     弱相关
                 0.0-0.2     极弱相关或无相关

 

 

Pearson(皮尔逊)相关系数

 

 

1、简介

 

皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。

你可能感兴趣的:(MATLAB,matlab,function)