Flink入门及实战-上:
http://edu.51cto.com/sd/07245
Flink入门及实战-下:
http://edu.51cto.com/sd/5845e
flink可以在Linux, Mac OS X, 和Windows平台上运行。为了运行flink,只需要安装JAVA7.x(或者更高版本)。windows用户,请点击此链接查看相关文档。
你可以使用下面命令检查安装的java版本
java -version
如果你已经安装了java8,你将会看到下面的数据。
java version "1.8.0_111"
Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
下面以在linux上安装为例(mac上安装也可以参考这个):
$ cd ~/Downloads # 进入文件的下载目录
$ tar xzf flink-*.tgz # 解压下载的压缩包
$ cd flink-1.4.1
安装本地flink集群
./bin/start-local.sh # 启动 Flink 集群
在浏览器输入此链接查看flink集群信息 http://localhost:8081
你也可以在log日志目录中检查系统运行情况
$ tail log/flink-*-jobmanager-*.log
INFO ... - Starting JobManager
INFO ... - Starting JobManager web frontend
INFO ... - Web frontend listening at 127.0.0.1:8081
INFO ... - Registered TaskManager at 127.0.0.1 (akka://flink/user/taskmanager)
你可以在github上发现SocketWindowWordCount 编译好的java和scala源码
scala代码
object SocketWindowWordCount {
def main(args: Array[String]) : Unit = {
// port 表示需要连接的端口
val port: Int = try {
ParameterTool.fromArgs(args).getInt("port")
} catch {
case e: Exception => {
System.err.println("No port specified. Please run 'SocketWindowWordCount --port '")
return
}
}
// 获取运行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// 连接此socket获取输入数据
val text = env.socketTextStream("localhost", port, '\n')
// 解析数据, 分组, 窗口化, 并且聚合求SUM
import org.apache.flink.api.scala._ //需要加上这一行隐式转换 否则在调用flatmap方法的时候会报错
val windowCounts = text
.flatMap { w => w.split("\\s") }
.map { w => WordWithCount(w, 1) }
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(1))
.sum("count")
// 使用一个单线程打印结果
windowCounts.print().setParallelism(1)
env.execute("Socket Window WordCount")
}
// 定义一个数据类型保存单词出现的次数
case class WordWithCount(word: String, count: Long)
}
java代码
public class SocketWindowWordCount {
public static void main(String[] args) throws Exception {
// port 表示需要连接的端口
final int port;
try {
final ParameterTool params = ParameterTool.fromArgs(args);
port = params.getInt("port");
} catch (Exception e) {
System.err.println("No port specified. Please run 'SocketWindowWordCount --port '");
return;
}
// 获取运行环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 连接此socket获取输入数据
DataStream text = env.socketTextStream("localhost", port, "\n");
// 解析数据, 分组, 窗口化, 并且聚合求SUM
DataStream windowCounts = text
.flatMap(new FlatMapFunction() {
@Override
public void flatMap(String value, Collector out) {
for (String word : value.split("\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(1))
.reduce(new ReduceFunction() {
@Override
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
// 使用一个单线程打印结果
windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");
}
// 定义一个数据类型保存单词出现的次数
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
现在,我们将要运行这个flink例子。它将会从socket获取数据,并且每隔5秒打印一次计算的单词出现的次数。
$ nc -l 9000
$ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000
Cluster configuration: Standalone cluster with JobManager at /127.0.0.1:6123
Using address 127.0.0.1:6123 to connect to JobManager.
JobManager web interface address http://127.0.0.1:8081
Starting execution of program
Submitting job with JobID: 574a10c8debda3dccd0c78a3bde55e1b. Waiting for job completion.
Connected to JobManager at Actor[akka.tcp://[email protected]:6123/user/jobmanager#297388688]
11/04/2016 14:04:50 Job execution switched to status RUNNING.
11/04/2016 14:04:50 Source: Socket Stream -> Flat Map(1/1) switched to SCHEDULED
11/04/2016 14:04:50 Source: Socket Stream -> Flat Map(1/1) switched to DEPLOYING
11/04/2016 14:04:50 Fast TumblingProcessingTimeWindows(5000) of WindowedStream.main(SocketWindowWordCount.java:79) -> Sink: Unnamed(1/1) switched to SCHEDULED
11/04/2016 14:04:51 Fast TumblingProcessingTimeWindows(5000) of WindowedStream.main(SocketWindowWordCount.java:79) -> Sink: Unnamed(1/1) switched to DEPLOYING
11/04/2016 14:04:51 Fast TumblingProcessingTimeWindows(5000) of WindowedStream.main(SocketWindowWordCount.java:79) -> Sink: Unnamed(1/1) switched to RUNNING
11/04/2016 14:04:51 Source: Socket Stream -> Flat Map(1/1) switched to RUNNING
这个程序连接到socket,然后等待数据。你可以通过webui界面查看job的运行情况
$ nc -l 9000
lorem ipsum
ipsum ipsum ipsum
bye
这个.out文件将会打印出来在指定时间内单词出现的次数
$ tail -f log/flink-*-taskmanager-*.out
lorem : 1
bye : 1
ipsum : 4
实验结束,停止flink。
$ ./bin/stop-local.sh
查看更多例子来熟悉flink程序的api。当你已经做完这些的时候,继续读下面的流处理指南
获取更多大数据资料,视频以及技术交流请加群:
QQ群号1:295505811(已满)
QQ群号2:54902210
QQ群号3:555684318