算法介绍:
简单的说,随机森林就是用随机的方式建立一个森林,森林里面有很多的决策树,并且每棵树之间是没有关联的。得到一个森林后,当有一个新的样本输入,森林中的每一棵决策树会分别进行一下判断,进行类别归类(针对分类算法),最后比较一下被判定哪一类最多,就预测该样本为哪一类。
随机森林算法有两个主要环节:决策树的生长和投票过程。
决策树生长步骤:
投票过程:
随机森林采用Bagging方法生成多个决策树分类器。
基本思想:
随机森林的优点:
缺点
寻找最优参数mtry,即指定节点中用于二叉树的最佳变量个数
library("randomForest")
n<-length(names(train_data)) #计算数据集中自变量个数,等同n=ncol(train_data)
rate=1 #设置模型误判率向量初始值
for(i in 1:(n-1)){
set.seed(1234)
rf_train<-randomForest(as.factor(train_data$IS_LIUSHI)~.,data=train_data,mtry=i,ntree=1000)
rate[i]<-mean(rf_train$err.rate) #计算基于OOB数据的模型误判率均值
print(rf_train)
}
rate #展示所有模型误判率的均值
plot(rate)
寻找最佳参数ntree,即指定随机森林所包含的最佳决策树数目
set.seed(100)
rf_train<-randomForest(as.factor(train_data$IS_LIUSHI)~.,data=train_data,mtry=12,ntree=1000)
plot(rf_train) #绘制模型误差与决策树数量关系图
legend(800,0.02,"IS_LIUSHI=0",cex=0.9,bty="n")
legend(800,0.0245,"total",cex=0.09,bty="n")
随机森林模型搭建
set.seed(100)
rf_train<-randomForest(as.factor(train_data$IS_LIUSHI)~.,data=train_data,mtry=12,ntree=400,importance=TRUE,proximity=TRUE)
输出变量重要性:分别从精确度递减和均方误差递减的角度来衡量重要程度。
importance<-importance(rf_train)
write.csv(importance,file="E:/模型搭建/importance.csv",row.names=T,quote=F)
barplot(rf_train$importance[,1],main="输入变量重要性测度指标柱形图")
box()
提取随机森林模型中以准确率递减方法得到维度重要性值。type=2为基尼系数方法
importance(rf_train,type=1)
varImpPlot(x=rf_train,sort=TRUE,n.var=nrow(rf_train$importance),main="输入变量重要性测度散点图")
信息展示
print(rf_train) #展示随机森林模型简要信息
hist(treesize(rf_train)) #展示随机森林模型中每棵决策树的节点数
max(treesize(rf_train));min(treesize(rf_train))
MDSplot(rf_train,train_data$IS_OFF_USER,palette=rep(1,2),pch=as.numeric(train_data$IS_LIUSHI)) #展示数据集在二维情况下各类别的具体分布情况
检测
pred<-predict(rf_train,newdata=test_data)
pred_out_1<-predict(object=rf_train,newdata=test_data,type="prob") #输出概率
table <- table(pred,test_data$IS_LIUSHI)
sum(diag(table))/sum(table) #预测准确率
plot(margin(rf_train,test_data$IS_LIUSHI),main=观测值被判断正确的概率图)
randomForest包可以实现随机森林算法的应用,主要涉及5个重要函数,语法和参数请见下
1:randomForest()函数用于构建随机森林模型
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes = NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)
2:importance()函数用于计算模型变量的重要性
importance(x, type=NULL, class="NULL", scale=TRUE, ...)
3:MDSplot()函数用于实现随机森林的可视化
MDSplot(rf, fac, k=2, palette=NULL, pch=20, ...)
4:rfImpute()函数可为存在缺失值的数据集进行插补(随机森林法),得到最优的样本拟合值
rfImpute(x, y, iter=5, ntree=300, ...)
rfImpute(x, data, ..., subset)
5:treesize()函数用于计算随机森林中每棵树的节点个数
treesize(x, terminal=TRUE)