本篇文章来源于慕课网收费专栏,本文纯为自己保留,删减大量部分,查看原文请支持正版。
在 ArrayList 的类注释上,JDK 就提醒了我们,如果要把 ArrayList 作为共享变量的话,是线程不安全的,推荐我们自己加锁或者使用 Collections.synchronizedList 方法,其实 JDK 还提供了另外一种线程安全的 List,叫做 CopyOnWriteArrayList,这个 List 具有以下特征
从整体架构上来说,CopyOnWriteArrayList 数据结构和 ArrayList 是一致的,底层是个数组,只不过 CopyOnWriteArrayList 在对数组进行操作的时候,基本会分四步走:
除了加锁之外,CopyOnWriteArrayList 的底层数组还被 volatile 关键字修饰,意思是一旦数组被修改,其它线程立马能够感知到,代码如下:
类注释:
新增操作:
// 添加元素到数组尾部
public boolean add(E e) {
final ReentrantLock lock = this.lock;
// 加锁
lock.lock();
try {
// 得到所有的原数组
Object[] elements = getArray();
int len = elements.length;
// 拷贝到新数组里面,新数组的长度是 + 1 的,因为新增会多一个元素
Object[] newElements = Arrays.copyOf(elements, len + 1);
// 在新数组中进行赋值,新元素直接放在数组的尾部
newElements[len] = e;
// 替换掉原来的数组
setArray(newElements);
return true;
// finally 里面释放锁,保证即使 try 发生了异常,仍然能够释放锁
} finally {
lock.unlock();
}
}
从上面我们一可以看出整个add过程都是在持有锁的状态下进行的,通过加锁,来保证同一时刻只有一个线程能对同一个数组进行操作。
那么为什么加锁了还要进行数组的copy呢?
指定位置添加元素的源码:
int numMoved = len - index;
// 如果要插入的位置正好等于数组的末尾,直接拷贝数组即可
if (numMoved == 0)
newElements = Arrays.copyOf(elements, len + 1);
else {
// 如果要插入的位置在数组的中间,就需要拷贝 2 次
// 第一次从 0 拷贝到 index。
// 第二次从 index+1 拷贝到末尾。
newElements = new Object[len + 1];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index, newElements, index + 1,
numMoved);
}
// index 索引位置的值是空的,直接赋值即可。
newElements[index] = element;
// 把新数组的值赋值给数组的容器中
setArray(newElements);
从 add 系列方法可以看出,CopyOnWriteArrayList 通过加锁 + 数组拷贝+ volatile 来保证了线程安全,每一个要素都有着其独特的含义:
// 批量删除包含在 c 中的元素
public boolean removeAll(Collection<?> c) {
if (c == null) throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
// 说明数组有值,数组无值直接返回 false
if (len != 0) {
// newlen 表示新数组的索引位置,新数组中存在不包含在 c 中的元素
int newlen = 0;
Object[] temp = new Object[len];
// 循环,把不包含在 c 里面的元素,放到新数组中
for (int i = 0; i < len; ++i) {
Object element = elements[i];
// 不包含在 c 中的元素,从 0 开始放到新数组中
if (!c.contains(element))
temp[newlen++] = element;
}
// 拷贝新数组,变相的删除了不包含在 c 中的元素
if (newlen != len) {
setArray(Arrays.copyOf(temp, newlen));
return true;
}
}
return false;
} finally {
lock.unlock();
}
从源码中,我们可以看到,我们并不会直接对数组中的元素进行挨个删除,而是先对数组中的值进行循环判断,把我们不需要删除的数据放到临时数组中,最后临时数组中的数据就是我们不需要删除的数据。
不知道大家有木有似曾相识的感觉,ArrayList 的批量删除的思想也是和这个类似的,所以我们在需要删除多个元素的时候,最好都使用这种批量删除的思想,而不是采用在 for 循环中使用单个删除的方法,单个删除的话,在每次删除的时候都会进行一次数组拷贝(删除最后一个元素时不会拷贝),很消耗性能,也耗时,会导致加锁时间太长,并发大的情况下,会造成大量请求在等待锁,这也会占用一定的内存。
在 CopyOnWriteArrayList 类注释中,明确说明了,在其迭代过程中,即使数组的原值被改变,也不会抛出 ConcurrentModificationException 异常,其根源在于数组的每次变动,都会生成新的数组,不会影响老数组,这样的话,迭代过程中,根本就不会发生迭代数组的变动,我们截几个图说明一下: