Spark Streaming和Kafka整合保证数据零丢失

Spark Streaming和Kafka整合保证数据零丢失
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制。为了体验这个关键的特性,你需要满足以下几个先决条件:
  1、输入的数据来自可靠的数据源和可靠的接收器;
  2、应用程序的metadata被application的driver持久化了(checkpointed );
  3、启用了WAL特性(Write ahead log)。
  下面我将简单地介绍这些先决条件。
可靠的数据源和可靠的接收器
对于一些输入数据源(比如Kafka),Spark Streaming可以对已经接收的数据进行确认。输入的数据首先被接收器(receivers )所接收,然后存储到Spark中(默认情况下,数据保存到2个执行器中以便进行容错)。数据一旦存储到Spark中,接收器可以对它进行确认(比如,如果消费Kafka里面的数据时可以更新Zookeeper里面的偏移量)。这种机制保证了在接收器突然挂掉的情况下也不会丢失数据:因为数据虽然被接收,但是没有被持久化的情况下是不会发送确认消息的。所以在接收器恢复的时候,数据可以被原端重新发送。
Spark Streaming和Kafka整合保证数据零丢失_第1张图片

元数据持久化(Metadata checkpointing)
可靠的数据源和接收器可以让我们从接收器挂掉的情况下恢复(或者是接收器运行的Exectuor和服务器挂掉都可以)。但是更棘手的问题是,如果Driver挂掉如何恢复?对此开发者们引入了很多技术来让Driver从失败中恢复。其中一个就是对应用程序的元数据进行Checkpint。利用这个特性,Driver可以将应用程序的重要元数据持久化到可靠的存储中,比如HDFS、S3;然后Driver可以利用这些持久化的数据进行恢复。元数据包括:
  1、配置;
  2、代码;
  3、那些在队列中还没有处理的batch(仅仅保存元数据,而不是这些batch中的数据)
Spark Streaming和Kafka整合保证数据零丢失_第2张图片
由于有了元数据的Checkpint,所以Driver可以利用他们重构应用程序,而且可以计算出Driver挂掉的时候应用程序执行到什么位置。
可能存在数据丢失的场景
令人惊讶的是,即使是可靠的数据源、可靠的接收器和对元数据进行Checkpint,仍然不足以阻止潜在的数据丢失。我们可以想象出以下的糟糕场景:
  1、两个Exectuor已经从接收器中接收到输入数据,并将它缓存到Exectuor的内存中;
  2、接收器通知输入源数据已经接收;
  3、Exectuor根据应用程序的代码开始处理已经缓存的数据;
  4、这时候Driver突然挂掉了;
  5、从设计的角度看,一旦Driver挂掉之后,它维护的Exectuor也将全部被kill;
  6、既然所有的Exectuor被kill了,所以缓存到它们内存中的数据也将被丢失。结果,这些已经通知数据源但是还没有处理的缓存数据就丢失了;
  7、缓存的时候不可能恢复,因为它们是缓存在Exectuor的内存中,所以数据被丢失了。
这对于很多关键型的应用程序来说非常的糟糕。
WAL(Write ahead log)
为了解决上面提到的糟糕场景,Spark Streaming 1.2开始引入了WAL机制。
  启用了WAL机制,所以已经接收的数据被接收器写入到容错存储中,比如HDFS或者S3。由于采用了WAl机制,Driver可以从失败的点重新读取数据,即使Exectuor中内存的数据已经丢失了。在这个简单的方法下,Spark Streaming提供了一种即使是Driver挂掉也可以避免数据丢失的机制。
Spark Streaming和Kafka整合保证数据零丢失_第3张图片
At-least-once语义
虽然WAL可以确保数据不丢失,它并不能对所有的数据源保证exactly-once语义。想象一下可能发生在Spark Streaming整合Kafka的糟糕场景。
  1、接收器接收到输入数据,并把它存储到WAL中;
  2、接收器在更新Zookeeper中Kafka的偏移量之前突然挂掉了;
Spark Streaming和Kafka整合保证数据零丢失_第4张图片
3、Spark Streaming假设输入数据已成功收到(因为它已经写入到WAL中),然而Kafka认为数据被没有被消费,因为相应的偏移量并没有在Zookeeper中更新;
  4、过了一会,接收器从失败中恢复;
  5、那些被保存到WAL中但未被处理的数据被重新读取;
  6、一旦从WAL中读取所有的数据之后,接收器开始从Kafka中消费数据。因为接收器是采用Kafka的High-Level Consumer API实现的,它开始从Zookeeper当前记录的偏移量开始读取数据,但是因为接收器挂掉的时候偏移量并没有更新到Zookeeper中,所有有一些数据被处理了2次。
WAL的缺点
除了上面描述的场景,WAL还有其他两个不可忽略的缺点:
  1、WAL减少了接收器的吞吐量,因为接受到的数据必须保存到可靠的分布式文件系统中。
  2、对于一些输入源来说,它会重复相同的数据。比如当从Kafka中读取数据,你需要在Kafka的brokers中保存一份数据,而且你还得在Spark Streaming中保存一份。
Kafka direct API
为了解决由WAL引入的性能损失,并且保证 exactly-once 语义,Spark Streaming 1.3中引入了名为Kafka direct API。
  这个想法对于这个特性是非常明智的。Spark driver只需要简单地计算下一个batch需要处理Kafka中偏移量的范围,然后命令Spark Exectuor直接从Kafka相应Topic的分区中消费数据。换句话说,这种方法把Kafka当作成一个文件系统,然后像读文件一样来消费Topic中的数据。
Spark Streaming和Kafka整合保证数据零丢失_第5张图片
在这个简单但强大的设计中:
  1、不再需要Kafka接收器,Exectuor直接采用Simple Consumer API从Kafka中消费数据。
  2、不再需要WAL机制,我们仍然可以从失败恢复之后从Kafka中重新消费数据;
  3、exactly-once语义得以保存,我们不再从WAL中读取重复的数据。
下面详细阐述一下这两种模式优劣势:
kafka+spark streaming(Reciever)
(优势):
high level数据读取方式让用户可以专注于所读取数据,而不用关注和维护consumer的offset,减少用户的工作量和代码量而且相对比较简单
(不足):
防数据丢失,做checkpoint操作以及配置spark.streaming.receiver.writeAheadLog.enable参数,配置spark.streaming.receiver.writeAheadLog.enable参数,每次处理之前需要将该batch内的日志备份到checkpoint目录中,降低了数据处理的效率,反过来又加重了receiver端的压力;另外由于数据备份机制,会受到负载影响,负载一高就会出现延迟风险,导致应用崩溃
单receiver内存,由于receiver也是属于executor的一部分,那么为了提高吞吐量,提高receiver的内存。但是在每次batch计算中,参与计算的batch并不会使用到这么多的内存,导致资源严重浪费
在程序失败恢复时,有可能出现数据部分落地,但是程序失败,未更新offsets的情况,这导致数据重复消费的问题
提高并行度,采用多个receiver来保存kafka的数据。receiver读取数据是异步的,并不参与计算。如果开较高的并行度来平衡吞吐量很不划算
receiver和计算的executor是异步的那么遇到网络因素等原因,导致计算出现延迟,计算队列一直在增加,而receiver则在一直接受数据,这就非常容易导致程序崩溃
采用MEMORY_AND_DISK_SER降低对内存的要求。但在一定程度上影响计算的速度
kafka+spark streaming(Driect)
(优势):
简化并行,不需要创建以及union多输入源,kafka topic 的partition–对应高效,相比于reciever的零数据丢失机制(需要保存两分数据,浪费存储空间,影响效率)
强一致语义(exactly-once)不存在重复消费数据的问题降低资源,Direct不需要Receivers,其申请的Executors全部参与到计算任务中;而Receiver-based则需要专门的Receivers来读取Kafka数据且不参与计算。因此相同的资源申请,Direct 能够支持更大的业务降低内存,Receiver-based的Receiver与其他Exectuor是异步的,并持续不断接收数据,对于小业务量的场景还好,如果遇到大业务量时,需要提高Receiver的内存,但是参与计算的Executor并无需那么多的内存。而Direct 因为没有Receiver,而是在计算时读取数据,然后直接计算,所以对内存的要求很低。实际应用中我们可以把原先的10G降至现在的2-4G左右鲁棒性更好,Receiver-based方法需要Receivers来异步持续不断的读取数据,因此遇到网络、存储负载等因素,导致实时任务出现堆积,但Receivers却还在持续读取数据,此种情况很容易导致计算崩溃。Direct 则没有这种顾虑,其Driver在触发batch 计算任务时,才会读取数据并计算。队列出现堆积并不会引起程序的失败
(不足):
提高成本,driect需要用户采用checkpoint或者第三方存储来维护offsets,而不像receiver通过zookeeper来维护offsets,提高了用户的开发成本监控可视化,receiver方式指定topic指定conssumer的消费请况均能通过zookeeper来监控,而direct则没有这种便利,如果要做到监控并且可视化,则需要投发入人力开

参考原文:https://www.cnblogs.com/felixzh/p/6371253.html

你可能感兴趣的:(大数据)