早期的内核版本中,几乎所有的中断都是由__do_IRQ函数进行处理,但是,因为各种中断请求的电气特性会有所不同,又或者中断控制器的特性也不同,这会导致以下这些处理也会有所不同:
typedef void (*irq_flow_handler_t)(unsigned int irq,
struct irq_desc *desc);
目前的通用中断子系统实现了以下这些标准流控回调函数,这些函数都定义在:kernel/irq/chip.c中,
驱动程序和板级代码可以通过以下几个API设置irq的流控函数:
以下这个序列图展示了整个通用中断子系统的中断响应过程,flow_handle一栏就是中断流控层的生命周期:
图1.1 通用中断子系统的中断响应过程
该函数没有实现任何实质性的流控操作,在把irq_desc结构锁住后,直接调用handle_irq_event处理irq_desc中的action链表,它通常用于多路复用(类似于中断控制器级联)中的子中断,由父中断的流控回调中调用。或者用于无需进行硬件控制的中断中。以下是它的经过简化的代码:
void
handle_simple_irq(unsigned int irq, struct irq_desc *desc)
{
raw_spin_lock(&desc->lock);
......
handle_irq_event(desc);
out_unlock:
raw_spin_unlock(&desc->lock);
}
void
handle_level_irq(unsigned int irq, struct irq_desc *desc)
{
raw_spin_lock(&desc->lock);
mask_ack_irq(desc);
if (unlikely(irqd_irq_inprogress(&desc->irq_data)))
goto out_unlock;
......
if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data)))
goto out_unlock;
handle_irq_event(desc);
if (!irqd_irq_disabled(&desc->irq_data) && !(desc->istate & IRQS_ONESHOT))
unmask_irq(desc);
out_unlock:
raw_spin_unlock(&desc->lock);
}
虽然handle_level_irq对电平中断的流控进行了必要的处理,因为电平中断的特性:只要没有ack irq,中断线会一直有效,所以我们不会错过某次中断请求,但是驱动程序的开发人员如果对该过程理解不透彻,特别容易发生某次中断被多次处理的情况。特别是使用了中断线程(action->thread_fn)来响应中断的时候:通常mask_ack_irq只会清除中断控制器的pending状态,很多慢速设备(例如通过i2c或spi控制的设备)需要在中断线程中清除中断线的pending状态,但是未等到中断线程被调度执行的时候,handle_level_irq早就返回了,这时已经执行过unmask_irq,设备的中断线pending处于有效状态,中断控制器会再次发出中断请求,结果是设备的一次中断请求,产生了两次中断响应。要避免这种情况,最好的办法就是不要单独使用中断线程处理中断,而是要实现request_threaded_irq()的第二个参数irq_handler_t:handler,在handle回调中使用disable_irq()关闭该irq,然后在退出中断线程回调前再enable_irq()。假设action->handler没有屏蔽irq,以下这幅图展示了电平中断期间IRQ_PROGRESS标志、本地中断状态和触发其他CPU的状态:
状态 | 红色 | 绿色 |
---|---|---|
IRQ_PROGRESS | TRUE | FALSE |
是否允许本地cpu中断 | 禁止 | 允许 |
是否允许该设备再次触发中断(可能由其它cpu响应) | 禁止 | 允许 |
if (unlikely(irqd_irq_disabled(&desc->irq_data) ||
irqd_irq_inprogress(&desc->irq_data) || !desc->action)) {
if (!irq_check_poll(desc)) {
desc->istate |= IRQS_PENDING;
mask_ack_irq(desc);
goto out_unlock;
}
}
desc->irq_data.chip->irq_ack(&desc->irq_data);
从上面的分析可以知道,处理中断期间,另一次请求可能由另一个cpu响应后挂起,所以在处理完本次请求后还要判断IRQS_PENDING标志,如果被置位,当前cpu要接着处理被另一个cpu“委托”的请求。内核在这里设置了一个循环来处理这种情况,直到IRQS_PENDING标志无效为止,而且因为另一个cpu在响应并挂起irq时,会mask irq,所以在循环中要再次unmask irq,以便另一个cpu可以再次响应并挂起irq:
do {
......
if (unlikely(desc->istate & IRQS_PENDING)) {
if (!irqd_irq_disabled(&desc->irq_data) &&
irqd_irq_masked(&desc->irq_data))
unmask_irq(desc);
}
handle_irq_event(desc);
} while ((desc->istate & IRQS_PENDING) &&
!irqd_irq_disabled(&desc->irq_data));
IRQS_PENDING标志会在handle_irq_event中清除。
状态 | 红色 | 绿色 |
IRQ_PROGRESS | TRUE | FALSE |
是否允许本地cpu中断 | 禁止 | 允许 |
是否允许该设备再次触发中断(可能由其它cpu响应) | 禁止 | 允许 |
是否处于中断上下文 | 处于中断上下文 | 处于进程上下文 |
void
handle_fasteoi_irq(unsigned int irq, struct irq_desc *desc)
{
raw_spin_lock(&desc->lock);
if (unlikely(irqd_irq_inprogress(&desc->irq_data)))
if (!irq_check_poll(desc))
goto out;
......
if (unlikely(!desc->action || irqd_irq_disabled(&desc->irq_data))) {
desc->istate |= IRQS_PENDING;
mask_irq(desc);
goto out;
}
if (desc->istate & IRQS_ONESHOT)
mask_irq(desc);
preflow_handler(desc);
handle_irq_event(desc);
out_eoi:
desc->irq_data.chip->irq_eoi(&desc->irq_data);
out_unlock:
raw_spin_unlock(&desc->lock);
return;
......
}
此外,内核还提供了另外一个eoi版的函数:
handle_edge_eoi_irq,它的处理类似于handle_edge_irq,只是无需实现mask和unmask的逻辑。
void
handle_percpu_irq(unsigned int irq, struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
kstat_incr_irqs_this_cpu(irq, desc);
if (chip->irq_ack)
chip->irq_ack(&desc->irq_data);
handle_irq_event_percpu(desc, desc->action);
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
}
该函数用于实现其中一种中断共享机制,当多个中断共享某一根中断线时,我们可以把这个中断线作为父中断,共享该中断的各个设备作为子中断,在父中断的中断线程中决定和分发响应哪个设备的请求,在得出真正发出请求的子设备后,调用handle_nested_irq来响应中断。所以,该函数是在进程上下文执行的,我们也无需扫描和执行irq_desc结构中的action链表。父中断在初始化时必须通过irq_set_nested_thread函数明确告知中断子系统:这些子中断属于线程嵌套中断类型,这样驱动程序在申请这些子中断时,内核不会为它们建立自己的中断线程,所有的子中断共享父中断的中断线程。
void handle_nested_irq(unsigned int irq)
{
......
might_sleep();
raw_spin_lock_irq(&desc->lock);
......
action = desc->action;
if (unlikely(!action || irqd_irq_disabled(&desc->irq_data)))
goto out_unlock;
irqd_set(&desc->irq_data, IRQD_IRQ_INPROGRESS);
raw_spin_unlock_irq(&desc->lock);
action_ret = action->thread_fn(action->irq, action->dev_id);
raw_spin_lock_irq(&desc->lock);
irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
out_unlock:
raw_spin_unlock_irq(&desc->lock);
}