- MATLAB车牌定位和识别系统
清风明月来几时
图像算法处理matlab开发语言
有很多方法可以实现MATLAB车牌的定位和识别系统。以下是一种可能的实现步骤:车牌定位:使用图像处理技术(如边缘检测、区域生长或颜色分割)来检测图像中的车牌区域。使用形态学操作来排除不符合车牌形状的区域。对车牌区域进行裁剪或调整大小,以便后续的识别。车牌识别:将车牌图像转换为灰度图像。使用图像处理技术(如二值化、滤波或增强)来减少噪音并突出字符。使用字符分割算法将车牌中的字符分开。使用特征提取方法
- OpenCV-模板匹配多个目标
红米煮粥
opencv人工智能计算机视觉
文章目录一、基本概念二、基本步骤1.图像准备2.图像预处理3.执行模板匹配4.定位匹配区域5.处理多个匹配6.优化和验证三、代码实现1.图片读取2.图像预处理3.模板匹配4.绘制矩形框三、总结模型匹配(ModelMatching)是一个广泛应用的概念,其具体含义和应用领域会根据上下文的不同而有所变化。一、基本概念模型匹配是指通过比较待匹配的数据或对象与已有的模型之间的相似度或距离,来寻找最佳匹配的
- OpenCV-轮廓检测
红米煮粥
计算机视觉opencv图像处理
文章目录一、简介1.意义2.具体步骤二、代码实现三、总结一、简介1.意义在OpenCV中,轮廓检测是图像处理中一个非常重要的环节,它允许我们识别图像中的形状。这个过程通常涉及几个步骤:读取图像、转换为灰度图、应用阈值处理(或边缘检测)以获取二值图像、然后使用cv2.findContours()函数查找轮廓。2.具体步骤图像预处理:首先,对原始图像进行预处理,以便更容易地检测轮廓。这通常包括转换为灰
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- python的图像阈值化处理及算法对比
yava_free
计算机视觉人工智能python
一.阈值化(注:该部分参考作者的论文《基于苗族服饰的图像锐化和边缘提取技术研究》)图像的二值化或阈值化(Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值T,通过T将图像的像素划分为两类:大于T的像素群和小于T的像素群。灰度转换处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。二值化处理可以将图像中的像素划分为两类颜色,常用的二值化算法如公式
- spark mllib 特征学习笔记 (一)
路人与大师
spark-ml学习笔记
PySparkMLlib特征处理详解PySparkMLlib提供了丰富的特征处理工具,帮助我们进行特征提取、转换和选择。以下是PySparkMLlib中常用的特征处理类及其简要介绍。1.BinarizerBinarizer是将连续特征二值化的转换器。frompyspark.ml.featureimportBinarizerbinarizer=Binarizer(threshold=0.5,inpu
- OpenCV中的轮廓检测cv2.findContours()
Limiiiing
OpenCVopencvpython图像处理
文章目录前言一、查找轮廓二、绘制轮廓轮廓面积轮廓周长前言轮廓提取的前提,将背景置为黑色,目标为白色(利用二值化或Canny)边缘检测,例如Canny等,利用梯度变化,记录图像中的边缘像素点,返回和源图片一样尺寸和类型的边缘图。轮廓检测,则是将得到的每一个轮廓信息存储下来,记录的是轮廓之间和内部的信息。一、查找轮廓contours,hierarchy=cv2.findContours(image,m
- C# 教程 目录
VB.Net
C#教程C#教程
17.3图像处理17.3.1像素处理17.3.1.1逆反(底片)17.3.1.2曝光17.3.1.3灰度17.3.1.4浮雕17.3.1.5二值化(黑白)17.3.1.6自定义处理17.3.2内存处理17.3.2.1Bitmap.LockBits方法和Bitmap.UnlockBits方法17.3.2.2BitmapData类17.3.2.3逆反17.3.2.4曝光17.3.2.5灰度17.3.2
- 【机器学习】4. 相似性比较(二值化数据)与相关度(correlation)
pen-ai
机器学习机器学习人工智能scikit-learnpython
SMCSimpleMatchingCoefficient评估两组二进制数组相似性的参数SMC=(f11+f00)/(f01+f10+f11+f00)其中,f11表示两组都为1的组合个数,f10表示第一组为1,第二组为0的组合个数。这样做会有一个缺点,假设是比较稀疏的数据,如今天去哪一个地区,地区有成千上万个,但是去的只有一个地区。那么就会导致f00非常的大,如此计算的结果SMC必然很大,但是能够代
- OpenCV-绘制图形
萌新程序猿~
图像识别与OpenCVopencv人工智能计算机视觉
文章目录所有相关接口验证demo以上传至仓库绘制线绘制矩形绘制圆绘制椭圆绘制多边形绘制填充多边形绘制文本所有相关接口验证demo以上传至仓库代码地址:https://gitee.com/norep/learn-opencv绘制线cv2.line(image,pt1,pt2,color,thickness=1,lineType=cv2.LINE_8,shift=0)#cv2.line(graph,(
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 车牌识别-基于模板匹配
勇敢歪歪
matlab开发语言
基于模板匹配的车牌识别一、设计思路二、功能模块1、GUI界面创建2、图片选择3、车牌粗定位4、灰度化5、倾斜矫正6、二值化和第一次形态学处理7、精确定位8、第二次形态学处理9、字符分割10、归一化切割后的字符以及模板11、字符匹配12、语音播报13、退出系统和关于按钮三、总的操作图一、设计思路车牌识别程序的设计主要基于车牌的固有特点,这些特点指导算法的设计。在一个识别系统中首先选择某一个或几个车牌
- OpenCV-40 绘制直方图
一道秘制的小菜
OpenCVopencv人工智能计算机视觉numpypython
一、使用matplotlib画直方图可以利用matplotlib把OpenCV统计得到的直方图绘制出来示例代码如下:importcv2importmatplotlib.pyplotaspltlena=cv2.imread("beautifulwomen.png")#变为黑白图片gray=cv2.cvtColor(lena,cv2.COLOR_BGR2GRAY)print(gray)#统计直方图数据
- Java 验证码识别(2)Java OpenCV 的使用 灰度、二值化、腐蚀膨胀 去干扰线
小百菜
javajava去干扰线二值化灰度机器学习
上一篇使用Tess4J进行OCR识别,虽然能识别一些简单的验证码,但是验证码有干扰线就识别不了。这一篇讲下如何使用OpenCV去除干扰线。1、maven依赖org.bytedecojavacv-platform1.5.5OpenCV用C++语言编写,提供了接口,我这里使用javacv它里面就有opencv,不过这样依赖会将所有平台的jar包都拉取下来,项目接近1G大小,可以看下我的另外一篇博文精简
- opencv案例实战:表格修复
艾醒(AiXing-w)
零基础上手计算机视觉项目opencv人工智能计算机视觉
OpenCV表格修复前言案例读取图像高斯滤波二值化分离表格行和列还原结果优化获取表格框画出矩形框获取图像相关数据根据矩形框裁剪前言在对于图标的扫描问题当中,有些时候会遇到扫描的表格缺失的问题,通过OpenCV中的形态学变换(morphologyEx)实现对于表格的修复。案例假设我们这里有一张表,可以看到第二行和第二列的表格有些缺少,我们的任务是将这些表格补全。
- 深度神经网络中的BNN和DNN:基于存内计算的原理、实现与能量效率
算法
引言深度神经网络(DNN)在机器学习领域越来越受欢迎,其在一系列任务中展现出最先进的性能。为了达到最佳结果,通常需要大量的训练数据和大型模型,从而使得训练和推理过程变得复杂。尽管图形处理单元(GPU)在许多应用中被用于提供并行计算能力,但较低能耗的平台有可能实现一系列新的应用。目前,一个趋势是降低权重和激活精度的能力,以前的研究表明,在某些情况下,权重和激活可以二值化(即二值化神经网络,BNN),
- ITK 图像分割(一):阈值ThresholdImageFilter
恋恋西风
ITK计算机视觉ITKThreshold
效果:Video:区域增加分割1、itkThresholdImageFilter该类的主要功能是通过设置低阈值、高阈值或介于高低阈值之间,则将图像值输出为用户指定的值。如果图像值低于、高于或介于设置的阈值之间,该类就将图像值设置为用户指定的“外部”值(默认情况下为“黑色”)。该类并不对像素进行二值化处理,输出图像中的像素值可以是浮点型或整型。常用的成员函数:Set/GetLower():设置/获取
- 帮我写一份关于车牌识别的opencv、python报告
Waiyuet Fung
pythonopencv计算机视觉人工智能深度学习
好的,我会尽力帮你写一份关于车牌识别的报告。首先,车牌识别是一种常见的计算机视觉任务,它旨在使用计算机图像处理技术来识别车辆的车牌号码。这对于自动驾驶车辆、停车场管理、交通监控等应用非常重要。使用OpenCV和Python进行车牌识别的一般流程如下:图像预处理:首先,我们需要对输入的图像进行预处理,以确保图像质量较高。这可能包括对图像进行灰度化、去噪、二值化等操作。车牌定位:接下来,我们需要在图像
- OpenCV-35 查找轮廓
一道秘制的小菜
OpenCVopencv人工智能计算机视觉numpypython
一、什么是图像轮廓图像轮廓是具有相同颜色或灰度的连续点的曲线,轮廓在形状分析和物体的检测识别中很有用。用于图形分析物体的识别和检测注意点:为了检测的准确性,需要先对图像进行二值化或Canny操作。画轮廓时会修改输入的图像,如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。(即画轮廓是在原图上进行修改)二、查找轮廓通过使用API---findContours(img,mode,method
- (已解决)(方法在底部)pycharm使用import cv2时报错,没有名称为 ‘cv2‘ 的模块,如何添加cv2模块,import cv2时被标红怎么解决
芝麻糊76
opencvpythonopencvpycharm
写作原因关于我想写这篇文章的原因,是想记录在学习opencv路上遇到的一些问题,并将踩到的坑填平后分享给大家,减少学习上不必要的时间浪费和痛苦折磨。问题(无法安装)在importcv2的时候发现被标红,将鼠标移至cv2的位置时出现了提示“没有名称为cv2的模块”在进行如上操作后发现并没有办法解决,最终解决办法在一番尝试后发现在“更多操作-安装软件包opencv-仍要安装-是”之后,cv2成功安装,
- ncc匹配提速总结
工业机器视觉设计和实现
计算机视觉人工智能机器视觉
我们ncc最原始的匹配方法是:学习模板w*h个像素都要带入ncc公式计算第一种提速,学习模板是w*h,而我们支取其中的w/2*h/2,匹配窗口同理,计算量只有1/4。另外一种因为ncc是线性匹配,我们在这上面也做了文章,即我们匹配时,可以缩小原图像,从而加快匹配,即使用了ncc的缩放性匹配。第二种提速,这个计算量比第一种还少。第三种:就是直方图方式匹配,归一化到256次计算。第四中:如果你用二值化
- 【Ubuntu18.04搭建 SLAM环境】
cc-growing
gitubuntulinux
CMake、g++、git的安装这是最基本的c++编译环境,可能已经安装了sudoapt-getinstallcmakesudoapt-getinstallg++sudoapt-getinstallgitOpencv3.4.16配置+opencv_contribOpencv有很多版本,建议采用源码安装对于Opencv3来说,最好安装3.4.5/3.4.16安装包下载注意opencv与opencv-
- C/C++图像处理实验(二)——图像的二值化
龙行泽雨
嵌入式图像处理c语言c++开发语言stm32单片机
简介图像的二值化可以有效地分割图像主体和背景,提取自己感兴趣的部分。图像二值化有多种方式和形式,最简单的是自己设定阈值,然后根据阈值将对应的像素点赋值为0或者255。有时候为了提高程序的鲁棒性,可以使用图像的平均灰度加上一个偏置作为阈值,又或者是用大津法(OSTU)求出“最佳阈值”后,再加上偏置量作为阈值。在二值化的形式上,可以低于阈值的像素设为黑,高于阈值的设为白,但是也可以根据实际需要反过来设
- 深度神经网络中的BNN和DNN:基于存内计算的原理、实现与能量效率
算法
引言深度神经网络(DNN)在机器学习领域越来越受欢迎,其在一系列任务中展现出最先进的性能。为了达到最佳结果,通常需要大量的训练数据和大型模型,从而使得训练和推理过程变得复杂。尽管图形处理单元(GPU)在许多应用中被用于提供并行计算能力,但较低能耗的平台有可能实现一系列新的应用。目前,一个趋势是降低权重和激活精度的能力,以前的研究表明,在某些情况下,权重和激活可以二值化(即二值化神经网络,BNN),
- 第十七篇【传奇开心果系列】Python的OpenCV库技术点案例示例:自适应阈值二值化处理图像提取文字
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv计算机视觉人工智能图像处理
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、自适应阈值二值化处理图像提取文字轮廓的初步示例代码:二、扩展思路介绍三、调整自适应阈值二值化的参数示例代码四、对二值化图像进行形态学操作示例代码五、使用轮廓特征进行筛选示例代码六、边缘检测算法示例代码七、使用图像分割算法将图像分割为文字和背景区域示例代码八、调整参数优化文字轮廓示例代码九、应用形态学操
- 五、机器学习模型及其实现1
ITS_Oaij
脑电机器学习机器学习人工智能
1_机器学习1)基础要求:所有的数据全部变为了特征,而不是eeg信号了python基础已经实现了特征提取、特征选择(可选)进行了数据预处理.预处理指对数据进行清洗、转换等处理,使数据更适合机器学习的工具。Scikit提供了一些预处理的方法,分别是标准化、非线性转换、归一化、二值化、分类特征编码、缺失值插补、生成多项式特征等2)机器学习送入模型的数据结构:data和labeldata:n*m的矩阵,
- 三、特征提取、特征预处理
ITS_Oaij
脑电机器学习机器学习深度学习人工智能
三、特征提取、特征预处理1_特征提取1.1统计学特征1.2时域1.3频域1.4其他EEG特殊特征2_特征提取预处理(理论及Python实现)2.1归一化2.2标准化2.3特征二值化2.4特征编码2.5缺失值处理2.6样本不平衡问题1_特征提取1.1统计学特征1.2时域1.3频域1.4其他EEG特殊特征2_特征提取预处理(理论及Python实现)2.1归一化2.2标准化2.3特征二值化2.4特征编码
- 使用Python PIL库实现简单验证码的去噪处理
梦想编程家小枫
想要识别验证码,收集足够多的样本后,首先要做的就是对验证码原始图片进行处理,对验证码识别分类之前,一般包括:将彩色图片转换成灰度图、将灰度图二值化和去除噪点三个基本过程。这里仅以比较简单的验证码为例,介绍一下如何通过Python的PIL库对图片去噪处理。首先看一下未经处理的验证码图片:对图片处理主要使用了PIL库的Image类。1、彩色图片转换成灰度图首先使用Image的open方法打开上面的图片
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_