- 基于Python编程语言实现“机器学习”,用于车牌识别项目
我的sun&shine
Pythonpython机器学习计算机视觉
基于Python的验证码识别研究与实现1.摘要验证码的主要目的是区分人类和计算机,用来防止自动化脚本程序对网站的一些恶意行为,目前绝大部分网站都利用验证码来阻止恶意脚本程序的入侵。验证码的自动识别对于减少自动登录时长,识别难以识别的验证码图片有着重要的作用。对验证码图像进行灰度化、二值化、去离散噪声、字符分割、归一化、特征提取、训练和字符识别等过程可以实现验证码自动识别。首先将原图片进行灰度化处理
- 【OpenCV C++】如何快速 高效的计算出图像中大于值的像素个数? 遍历比较吗? No,效率太低!那么如何更高效?
R-G-B
OpenCVC++opencvc++计算机视觉
文章目录1问题2分析3代码实现(两种方法实现)方法1:使用cv::compare方法2:使用cv::threshold3.2compare和threshold看起来都有二值化效果?那么二者效率?4compare函数解释4.1参数解释4.2底层行为规则4.3应用示例4.4典型应用场景1问题一幅图像的目标区域ROI尺寸为60*35的灰度图,快速计算出大于backVal的像素个数,其中backVal=2
- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- python网格插值站点_在python中,在二维零网格上两点之间插值一条值线
weixin_39965490
python网格插值站点
TLDR:在2dnumpy数组中找到2个点后,如何在0数组中在它们之间插值一条1行?在上下文:目前我正在尝试从二值化的医学图像数据(0和1)对一个3d数组执行2d操作。最终目标是在填充体素/像素(即第一个和最后一个实例)的起点和终点之间添加一条1s的线。在为此,我使用SimpleITK分割一行,然后将其转换为numpy数组。在其他示例之后,我编写了返回一组数组的函数,这些数组显示填充(1)个像素和
- OTSU算法 (大津算法)理解&代码
当代女大学生
机器学习python计算机视觉算法
OTSU算法:对图像进行二值化的算法介绍OTSU算法是一种自适应的阈值确定的方法,又称大津阈值分割法,是最小二乘法意义下的最优分割。它是按图像的灰度特性,将图像分成背景和前景两部分。因方差是灰度分布均匀性的一种度量,背景和前景之间的类间方差越大,说明构成图像的两部分的差别越大,当部分前景错分为背景或部分背景错分为前景都会导致两部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。从大津法的原
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- 深入理解 OTSU 算法(大津法——最大类间方差法)
ZHauLee
机器学习算法计算机视觉人工智能
一、算法概述OTSU算法是一种用于图像分割的自动阈值选择算法,广泛应用于图像处理领域,特别是在二值化过程中。它是由日本学者大津展之(NobuyukiOtsu)在1979年提出,因此得名“OTSU算法”。二、算法原理OTSU算法的核心思想是通过遍历所有可能的阈值,将图像分割为前景(目标)和背景两部分,使得这两部分之间的类内方差(intra-classvariance)最小,或者说使得这两部分之间的类
- otsu算法_OTSU(大津法最大类间方差法)
weixin_39996742
otsu算法
OTSU基本介绍OTSU是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出,被誉为是图像分割中全局阈值选择的最佳方法。OTSU按照图像的灰度特性,将图像分成前景和背景两部分。因为方差可以看成是灰度分布均匀的一种度量,故前景和背景之间的类间方差越大,说明构成图像两部分的差别越大,当部分前景错分为背景或者部分背景被错分为前景时,都会导致两部分的差别变小。使用类间方差最大的分割一位置错分
- 从零打造工业级智能二维码识别系统:基于PyQt5与ZXingCpp的实战指南
蜡笔小新星
PyQt5qt开发语言python图像处理经验分享pyqt扫码读码解码
文章目录第一章:系统全景解析1.1实时识别工作流图解1.2界面布局与功能分区说明1.3代码文件结构树形图第二章:环境搭建与依赖管理2.1必需组件清单2.2虚拟环境配置步骤2.3摄像头硬件检测方法第三章:多线程视频采集3.1VideoThread类设计剖析3.2图像采集核心循环3.3线程安全停止机制3.4信号槽通信实例第四章:图像预处理流水线4.1预处理方法开关实现4.2自适应二值化算法4.3图像格
- Python从0到100(六十八):Python OpenCV-图像边缘检测及图像融合
是Dream呀
opencvpython计算机视觉
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 问题总结一
xwj_865574332
面试
一、验证码机制的处理先去识别元素----对元素进行操作验证码无法自动化技术手法去解决都是由开发给万能码,或者获取屏蔽验证码去解决那如果不能屏蔽,开发和你不在一起呢?PIL(图像识别功能)只能解决简单图片的处理1、对图片降噪固定的函数2、灰度处理(去除图片颜色)3、二值化处理(锐化)识别出来那如果是接口测试呢?验证码怎么办?万能码下面举了2种例子(第2个是别人分装好的,比较简单,代码较少)#导包cv
- Python 爬虫验证码识别
acheding
pythonpython爬虫ocr
在我们进行爬虫的过程中,经常会碰到有些网站会时不时弹出来验证码识别。我们该如何解决呢?这里分享2种我尝试过的方法。0.验证码示例1.OpenCV+pytesseract使用Python中的OpenCV库进行图像预处理(边缘保留滤波、灰度化、二值化、形态学操作和逻辑运算),然后结合pytesseract进行文字识别。pytesseract需要配合安装在本地的tesseract-ocr.exe文件一起
- 图像处理篇---基本OpenMV图像处理
Ronin-Lotus
图像处理篇嵌入式硬件篇图像处理人工智能计算机视觉python机器学习OpenMV
文章目录前言1.灰度化(Grayscale)2.二值化(Thresholding)3.掩膜(Mask)4.腐蚀(Erosion)5.膨胀(Dilation)6.缩放(Scaling)7.旋转(Rotation)8.平移(Translation)9.边缘检测(EdgeDetection)10.轮廓检测(ContourDetection)11.总结总结前言以上就是今天要讲的内容,本文仅仅简单介绍了Op
- 图像处理篇---基本Python图像处理
Ronin-Lotus
深度学习篇图像处理篇图像处理pythonopencv人工智能计算机视觉
文章目录前言1.图像灰度化原理Python实现2.图像二值化原理:Python实现3.图像掩膜(Mask)原理Python实现4.腐蚀(Erosion)和膨胀(Dilation)原理Python实现5.其他常用图像操作(1)图像缩放(2)图像旋转(3)图像平滑(模糊)(4)边缘检测(Canny)(5)轮廓检测6.总结总结前言以上就是今天要讲的内容,本文仅仅简单介绍了基本Python图像处理:灰度化
- python联合opencv实现图像的二值化处理阈值可视化分析
海宝7号
python2021可视化opencvpython图像识别图像处理
广义来看,在python中比较常用的主要是opencv,pil两个第三库,对比来看的话,opencv使用要更加的方便实用而且灵活。当然也可以都采用,对比分析其各自的效果。阈值可视化原理:设置一个阈值,低于该阈值的像素置为0(黑色),高于该阈值的像素置为255(白色)。基本函数原理实用方法:cv2.threshold(src,thresh,maxval,type)src:表示的是图片源thresh:
- OCR - Tesseract的Windows下安装使用及ocr识别
坐望云起
深度学习从入门到精通tesseractwin10ocrLSTM光学字符识别
一、光学字符识别技术OCR(OpticalCharacterRecognition),中文是光学字符识别。是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。主要包含以下技术1、图像输入:要进行OCR识别,第一步就是通过采集所要识别的图像,可以是名片、身份证、护照、行驶证、驾驶证、公文、文档等等,然后将图像输入到识别核心区域。2、图像进行预处理:此过程包含二值化(像素)、去噪、倾斜
- PyTorch深度学习实战(2)——PyTorch快速入门
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
PyTorch的简洁设计使得它易于入门,在深入介绍PyTorch之前,本文先介绍一些PyTorch的基础知识,以便读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。1TensorTensor是PyTorch中最重要的数据结构,它可以是一个数(标量)、一维数组(向量)、二维数组(如矩阵、黑白图片等)或者更高维的数组(如彩色图片、视频等)。Tensor与NumPy
- C语言实现图像二值化变换项目源码
爽新全效瓷兔膏
本文还有配套的精品资源,点击获取简介:本项目提供了一个C语言编程案例,专门用于解决图像处理中的“百马百担”问题,即图像二值化。项目展示如何使用C语言进行图像的读取、处理和保存,特别是二值化转换的实现,通过设定阈值将图像简化为黑白色调,以突出其特征。源码中包括了图像读取、阈值设置、像素遍历和图像写入等关键步骤,适合C语言学习者和图像处理领域开发者学习实践。1.C语言图像处理简介简介C语言作为一种高效
- Python OpenCV图像位运算详解
缤纷彩色
opencvpython计算机视觉
PythonOpenCV图像位运算详解图像处理是近年来非常热门的一项技术,其中图像二值化、特征提取、形态学处理等应用广泛。而位运算是图像处理中最重要的操作之一,其作用不仅可以对二进制数据进行处理,还可以在图像处理中实现一些特殊的效果。OpenCV库中提供了一系列对图像进行位运算的函数,其中bitwise_and函数有着非常广泛的应用。OpenCV-Python中的bitwise_and函数是一个二
- OpenCV中的图像处理函数详解
Luzem0319
opencv图像处理人工智能
在OpenCV中,图像处理函数是实现图像处理和计算机视觉任务的基础。下面将详细介绍六个重要的图像处理函数:二值化函数、自适应二值化函数、腐蚀函数、膨胀函数、仿射变换函数和透视变换函数。一、二值化函数功能二值化函数(cv2.threshold())用于将灰度图像转换为二值图像。二值图像中,每个像素只有两种可能的值(通常是0和255),分别代表黑色和白色。参数src:输入图像,应为灰度图像。thres
- python识别复杂验证码2020_python 验证码识别示例(二) 复杂验证码识别
y921112y921112
在这篇博文中手把手教你如何去分割验证,然后进行识别。一:下载验证码验证码分析,图片上有折线,验证码有数字,有英文字母大小写,分类的时候需要更多的样本,验证码的字母是彩色的,图片上有雪花等噪点,因此识别改验证码难度较大二:二值化和降噪:三:切割:四:分类:五:测试识别率六:总结:综合识别率在70%左右,对于这个识别率我觉得还是挺高的,因为这个验证码的识别难度还是很大代码:一.下载图片:#-*-cod
- 连通区域计算
选与握
#图像处理
(一)two-pass四邻域连通区域计算1、先将图像二值化2、第一次按行扫描图像时,图像中的每个像素值从上到下,从左到右扫描,给每一个有效的像素值一个标签label,规则如下:(1)如果该像素的4邻域中左边像素值和上边像素值都为0且都没有标签,则给该像素一个新的标签label(2)如果该像素的4邻域中左边像素值或上边像素值有一个为1,则该像素的标签是像素值为1的标签(3)如果该像素的4邻域中左边像
- python3.6 split用法_对sklearn的使用之数据集的拆分与训练详解(python3.6)
weixin_39849054
python3.6split用法
研修课上讲了两个例子,融合一下。主要演示大致的过程:导入->拆分->训练->模型报告以及几个重要问题:①标签二值化②网格搜索法调参③k折交叉验证④增加噪声特征(之前涉及)fromsklearnimportdatasets#从cross_validation导入会出现warning,说已弃用fromsklearn.model_selectionimporttrain-test_splitfromsk
- opencv基础学习
yzx991013
OpenCV基础全集opencv学习人工智能
3.3OTSU阈值代码:importcv2importnumpyasnpfrommatplotlibimportpyplotaspltimg=cv2.imread('./image/otus.png',0)#简单阈值ret1,th1=cv2.threshold(img,127,255,cv2.THRESH_BINARY)#二值化阈值ret2,th2=cv2.threshold(img,0,255,
- MATLAB车牌定位和识别系统
清风明月来几时
图像算法处理matlab开发语言
有很多方法可以实现MATLAB车牌的定位和识别系统。以下是一种可能的实现步骤:车牌定位:使用图像处理技术(如边缘检测、区域生长或颜色分割)来检测图像中的车牌区域。使用形态学操作来排除不符合车牌形状的区域。对车牌区域进行裁剪或调整大小,以便后续的识别。车牌识别:将车牌图像转换为灰度图像。使用图像处理技术(如二值化、滤波或增强)来减少噪音并突出字符。使用字符分割算法将车牌中的字符分开。使用特征提取方法
- OpenCV-模板匹配多个目标
红米煮粥
opencv人工智能计算机视觉
文章目录一、基本概念二、基本步骤1.图像准备2.图像预处理3.执行模板匹配4.定位匹配区域5.处理多个匹配6.优化和验证三、代码实现1.图片读取2.图像预处理3.模板匹配4.绘制矩形框三、总结模型匹配(ModelMatching)是一个广泛应用的概念,其具体含义和应用领域会根据上下文的不同而有所变化。一、基本概念模型匹配是指通过比较待匹配的数据或对象与已有的模型之间的相似度或距离,来寻找最佳匹配的
- OpenCV-轮廓检测
红米煮粥
计算机视觉opencv图像处理
文章目录一、简介1.意义2.具体步骤二、代码实现三、总结一、简介1.意义在OpenCV中,轮廓检测是图像处理中一个非常重要的环节,它允许我们识别图像中的形状。这个过程通常涉及几个步骤:读取图像、转换为灰度图、应用阈值处理(或边缘检测)以获取二值图像、然后使用cv2.findContours()函数查找轮廓。2.具体步骤图像预处理:首先,对原始图像进行预处理,以便更容易地检测轮廓。这通常包括转换为灰
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- opencv学习笔记19-opencv焊点(原点)计数
The_xz
opencv学习笔记
一、原理:opencv学习笔记13-opencv连通组件标记实现硬币计数二、不同情况思路:当焊点为背景时,进行反色处理(二值化后若焊点为背景,转化为前景)。三、示例代码:#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(){utils::logging::setLog
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_