基于JDK1.8的String详解

String 类的定义

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {}

这是一个用 final 声明的常量类,不能被任何类所继承,而且一旦一个String对象被创建, 包含在这个对象中的字符序列是不可改变的, 包括该类后续的所有方法都是不能修改该对象的,直至该对象被销毁,这是我们需要特别注意的(该类的一些方法看似改变了字符串,其实内部都是创建一个新的字符串,下面讲解方法时会介绍)。接着实现了 Serializable接口,这是一个序列化标志接口,还实现了 Comparable 接口,用于比较两个字符串的大小(按顺序比较单个字符的ASCII码),后面会有具体方法实现;最后实现了 CharSequence 接口,表示是一个有序字符的集合,相应的方法后面也会介绍。

字段属性

/**用来存储字符串  */
private final char value[];

/** 缓存字符串的哈希码 */
private int hash; // Default to 0

/** 实现序列化的标识 */
private static final long serialVersionUID = -6849794470754667710L;

一个 String 字符串实际上是一个 char 数组。

构造方法

String 类的构造方法很多。可以通过初始化一个字符串,或者字符数组,或者字节数组等等来创建一个 String 对象。
基于JDK1.8的String详解_第1张图片

String str1 = "abc";//注意这种字面量声明的区别,文末会详细介绍
String str2 = new String("abc");
String str3 = new String(new char[]{'a','b','c'});

equals(Object anObject) 方法

	public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof String) {
            String anotherString = (String)anObject;
            int n = value.length;
            if (n == anotherString.value.length) {
                char v1[] = value;
                char v2[] = anotherString.value;
                int i = 0;
                while (n-- != 0) {
                    if (v1[i] != v2[i])
                        return false;
                    i++;
                }
                return true;
            }
        }
        return false;
    }

String 类重写了 equals 方法,比较的是组成字符串的每一个字符是否相同,如果都相同则返回true,否则返回false。

hashCode() 方法

	public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }

String 类的 hashCode 算法很简单,主要就是中间的 for 循环,计算公式如下:

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

s 数组即源码中的 val 数组,也就是构成字符串的字符数组。这里有个数字 31 ,为什么选择31作为乘积因子,而且没有用一个常量来声明?主要原因有两个:

  1. 31是一个不大不小的质数,是作为 hashCode 乘子的优选质数之一。
  2. 31可以被 JVM 优化,31 * i = (i << 5) - i。因为移位运算比乘法运行更快更省性能。

charAt(int index) 方法

	public char charAt(int index) {
        //如果传入的索引大于字符串的长度或者小于0,直接抛出索引越界异常
        if ((index < 0) || (index >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return value[index];//返回指定索引的单个字符
    }

我们知道一个字符串是由一个字符数组组成,这个方法是通过传入的索引(数组下标),返回指定索引的单个字符。

compareTo(String anotherString) 和compareToIgnoreCase(String str) 方法

我们先看看 compareTo 方法:

	public int compareTo(String anotherString) {
        int len1 = value.length;
        int len2 = anotherString.value.length;
        int lim = Math.min(len1, len2);
        char v1[] = value;
        char v2[] = anotherString.value;

        int k = 0;
        while (k < lim) {
            char c1 = v1[k];
            char c2 = v2[k];
            if (c1 != c2) {
                return c1 - c2;
            }
            k++;
        }
        return len1 - len2;
    }

源码也很好理解,该方法是按字母顺序比较两个字符串,是基于字符串中每个字符的 Unicode 值。当两个字符串某个位置的字符不同时,返回的是这一位置的字符 Unicode 值之差,当两个字符串都相同时,返回两个字符串长度之差。

compareToIgnoreCase() 方法在 compareTo 方法的基础上忽略大小写,我们知道大写字母是比小写字母的Unicode值小32的,底层实现是先都转换成大写比较,然后都转换成小写进行比较。

concat(String str) 方法

该方法是将指定的字符串连接到此字符串的末尾。

	public String concat(String str) {
        int otherLen = str.length();
        if (otherLen == 0) {
            return this;
        }
        int len = value.length;
        char buf[] = Arrays.copyOf(value, len + otherLen);
        str.getChars(buf, len);
        return new String(buf, true);
    }

首先判断要拼接的字符串长度是否为0,如果为0,则直接返回原字符串。如果不为0,则通过 Arrays 工具类的copyOf方法创建一个新的字符数组,长度为原字符串和要拼接的字符串之和,前面填充原字符串,后面为空。接着在通过 getChars 方法将要拼接的字符串放入新字符串后面为空的位置。

注意:返回值是 new String(buf, true),也就是重新通过 new 关键字创建了一个新的字符串,原字符串是不变的。这也是前面我们说的一旦一个String对象被创建, 包含在这个对象中的字符序列是不可改变的。

indexOf(int ch) 和 indexOf(int ch, int fromIndex) 方法

indexOf(int ch),参数 ch 其实是字符的 Unicode 值,这里也可以放单个字符(默认转成int),作用是返回指定字符第一次出现的此字符串中的索引。其内部是调用 indexOf(int ch, int fromIndex),只不过这里的 fromIndex =0 ,因为是从 0 开始搜索;而 indexOf(int ch, int fromIndex) 作用也是返回首次出现的此字符串内的索引,但是从指定索引处开始搜索。

	public int indexOf(int ch) {
        return indexOf(ch, 0);//从第一个字符开始搜索
    }
public int indexOf(int ch, int fromIndex) {
    final int max = value.length;//max等于字符的长度
    if (fromIndex < 0) {//指定索引的位置如果小于0,默认从 0 开始搜索
        fromIndex = 0;
    } else if (fromIndex >= max) {
        //如果指定索引值大于等于字符的长度(因为是数组,下标最多只能是max-1),直接返回-1
        return -1;
    }

    if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {//一个char占用两个字节,如果ch小于2的16次方(65536),绝大多数字符都在此范围内
        final char[] value = this.value;
        for (int i = fromIndex; i < max; i++) {//for循环依次判断字符串每个字符是否和指定字符相等
            if (value[i] == ch) {
                return i;//存在相等的字符,返回第一次出现该字符的索引位置,并终止循环
            }
        }
        return -1;//不存在相等的字符,则返回 -1
    } else {//当字符大于 65536时,处理的少数情况,该方法会首先判断是否是有效字符,然后依次进行比较
        return indexOfSupplementary(ch, fromIndex);
    }
}

split(String regex) 和 split(String regex, int limit) 方法

split(String regex) 将该字符串拆分为给定正则表达式的匹配。split(String regex , int limit) 也是一样,不过对于 limit 的取值有三种情况:

1 limit > 0 ,则pattern(模式)应用n - 1 次

String str = "a,b,c";
String[] c1 = str.split(",", 2);
System.out.println(c1.length);//2
System.out.println(Arrays.toString(c1));//{"a","b,c"}

2 limit = 0 ,则pattern(模式)应用无限次并且省略末尾的空字串

String str2 = "a,b,c,,";
String[] c2 = str2.split(",", 0);
System.out.println(c2.length);//3
System.out.println(Arrays.toString(c2));//{"a","b","c"}

3 limit < 0 ,则pattern(模式)应用无限次

String str2 = "a,b,c,,";
String[] c2 = str2.split(",", -1);
System.out.println(c2.length);//5
System.out.println(Arrays.toString(c2));//{"a","b","c","",""}

下面我们看看底层的源码实现。对于 split(String regex) 没什么好说的,内部调用 split(regex, 0) 方法:

public String[] split(String regex) {
    return split(regex, 0);
}

重点看 split(String regex, int limit) 的方法实现:

public String[] split(String regex, int limit) {
    /* 1、单个字符,且不是".$|()[{^?*+\\"其中一个
     * 2、两个字符,第一个是"\",第二个大小写字母或者数字
     */
    char ch = 0;
    if (((regex.value.length == 1 &&
         ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
         (regex.length() == 2 &&
          regex.charAt(0) == '\\' &&
          (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
          ((ch-'a')|('z'-ch)) < 0 &&
          ((ch-'A')|('Z'-ch)) < 0)) &&
        (ch < Character.MIN_HIGH_SURROGATE ||
         ch > Character.MAX_LOW_SURROGATE))
    {
        int off = 0;
        int next = 0;
        boolean limited = limit > 0;//大于0,limited==true,反之limited==false
        ArrayList<String> list = new ArrayList<>();
        while ((next = indexOf(ch, off)) != -1) {
            //当参数limit<=0 或者 集合list的长度小于 limit-1
            if (!limited || list.size() < limit - 1) {
                list.add(substring(off, next));
                off = next + 1;
            } else {//判断最后一个list.size() == limit - 1
                list.add(substring(off, value.length));
                off = value.length;
                break;
            }
        }
        //如果没有一个能匹配的,返回一个新的字符串,内容和原来的一样
        if (off == 0)
            return new String[]{this};

        // 当 limit<=0 时,limited==false,或者集合的长度 小于 limit是,截取添加剩下的字符串
        if (!limited || list.size() < limit)
            list.add(substring(off, value.length));

        // 当 limit == 0 时,如果末尾添加的元素为空(长度为0),则集合长度不断减1,直到末尾不为空
        int resultSize = list.size();
        if (limit == 0) {
            while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
                resultSize--;
            }
        }
        String[] result = new String[resultSize];
        return list.subList(0, resultSize).toArray(result);
    }
    return Pattern.compile(regex).split(this, limit);
}

replace(char oldChar, char newChar) 和 String replaceAll(String regex, String replacement) 方法

replace(char oldChar, char newChar) :将原字符串中所有的oldChar字符都替换成newChar字符,返回一个新的字符串。

String replaceAll(String regex, String replacement):将匹配正则表达式regex的匹配项都替换成replacement字符串,返回一个新的字符串。

substring(int beginIndex) 和 substring(int beginIndex, int endIndex) 方法

substring(int beginIndex):返回一个从索引 beginIndex 开始一直到结尾的子字符串。

public String substring(int beginIndex) {
    if (beginIndex < 0) {//如果索引小于0,直接抛出异常
        throw new StringIndexOutOfBoundsException(beginIndex);
    }
    int subLen = value.length - beginIndex;//subLen等于字符串长度减去索引
    if (subLen < 0) {//如果subLen小于0,也是直接抛出异常
        throw new StringIndexOutOfBoundsException(subLen);
    }
    //1、如果索引值beginIdex == 0,直接返回原字符串
    //2、如果不等于0,则返回从beginIndex开始,一直到结尾
    return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
}

substring(int beginIndex, int endIndex):返回一个从索引 beginIndex 开始,到 endIndex 结尾的子字符串。

常量池

在前面讲解构造函数的时候,我们知道最常见的两种声明一个字符串对象的形式有两种:

1 通过“字面量”的形式直接赋值

String str = "hello";

2 通过 new 关键字调用构造函数创建对象

String str = new String("hello");

那么这两种声明方式有什么区别呢?在讲解之前,我们先介绍 JDK1.7(不包括1.7)以前的 JVM 的内存分布:
基于JDK1.8的String详解_第2张图片

  1. 程序计数器:也称为 PC寄存器,保存的是程序当前执行的指令的地址(也可以说保存下一条指令的所在存储单元的地址),当CPU需要执行指令时,需要从程序计数器中得到当前需要执行的指令所在存储单元的地址,然后根据得到的地址获取到指令,在得到指令之后,程序计数器便自动加1或者根据转移指针得到下一条指令的地址,如此循环,直至执行完所有的指令。线程私有。
  2. 虚拟机栈:基本数据类型、对象的引用都存放在这。线程私有。
  3. 本地方法栈:虚拟机栈是为执行Java方法服务的,而本地方法栈则是为执行本地方法(Native
    Method)服务的。在JVM规范中,并没有对本地方法栈的具体实现方法以及数据结构作强制规定,虚拟机可以自由实现它。在HotSopt虚拟机中直接就把本地方法栈和虚拟机栈合二为一。
  4. 方法区:存储了每个类的信息(包括类的名称、方法信息、字段信息)、静态变量、常量以及编译器编译后的代码等。注意:在Class文件中除了类的字段、方法、接口等描述信息外,还有一项信息是常量池,用来存储编译期间生成的字面量和符号引用。
  5. 堆:用来存储对象本身的以及数组(当然,数组引用是存放在Java栈中的)。

在 JDK1.7 以后,方法区的常量池被移除放到堆中了,如下:
基于JDK1.8的String详解_第3张图片
常量池:Java运行时会维护一个String Pool(String池), 也叫“字符串缓冲区”。String池用来存放运行时中产生的各种字符串,并且池中的字符串的内容不重复。

  1. 字面量创建字符串或者纯字符串(常量)拼接字符串会先在字符串池中找,看是否有相等的对象,没有的话就在字符串池创建该对象;有的话则直接用池中的引用,避免重复创建对象。
  2. new关键字创建时,直接在堆中创建一个新对象,变量所引用的都是这个新对象的地址。
  3. 使用包含变量表达式来创建String对象,则不仅会检查维护字符串池,还会在堆区创建这个对象,最后是指向堆内存的对象。
String str1 = "hello";
String str2 = "hello";
String str3 = new String("hello");
System.out.println(str1==str2);//true
System.out.println(str1==str3);//fasle
System.out.println(str2==str3);//fasle
System.out.println(str1.equals(str2));//true
System.out.println(str1.equals(str3));//true
System.out.println(str2.equals(str3));//true

对于上面的情况,首先 String str1 = “hello”,会先到常量池中检查是否有“hello”的存在,发现是没有的,于是在常量池中创建“hello”对象,并将常量池中的引用赋值给str1;第二个字面量 String str2 = “hello”,在常量池中检测到该对象了,直接将引用赋值给str2;第三个是通过new关键字创建的对象,常量池中有了该对象了,不用在常量池中创建,然后在堆中创建该对象,并将堆中对象的引用赋值给str3。如下图所示:
基于JDK1.8的String详解_第4张图片
使用包含变量表达式创建对象:

String str1 = "hello";
String str2 = "helloworld";
String str3 = str1+"world";//编译器不能确定为常量(会在堆区创建一个String对象)
String str4 = "hello"+"world";//编译器确定为常量,直接到常量池中引用

System.out.println(str2==str3);//fasle
System.out.println(str2==str4);//true
System.out.println(str3==str4);//fasle

str3 由于含有变量str1,编译器不能确定是常量,会在堆区中创建一个String对象。而str4是两个常量相加,直接引用常量池中的对象即可。
基于JDK1.8的String详解_第5张图片

intern() 方法

这是一个本地方法:

public native String intern();

当调用intern方法时,如果池中已经包含一个与该String确定的字符串相同equals(Object)的字符串,则返回该字符串。否则,将此String对象添加到池中,并返回此对象的引用。

这句话什么意思呢?就是说调用一个String对象的intern()方法,如果常量池中有该对象了,直接返回该字符串的引用(存在堆中就返回堆中,存在池中就返回池中),如果没有,则将该对象添加到池中,并返回池中的引用。

String str1 = "hello";//字面量 只会在常量池中创建对象
String str2 = str1.intern();
System.out.println(str1==str2);//true

String str3 = new String("world");//new 关键字只会在堆中创建对象
String str4 = str3.intern();
System.out.println(str3 == str4);//false

String str5 = str1 + str2;//变量拼接的字符串,会在常量池中和堆中都创建对象
String str6 = str5.intern();//这里由于池中已经有对象了,直接返回的是对象本身,也就是堆中的对象
System.out.println(str5 == str6);//true

String str7 = "hello1" + "world1";//常量拼接的字符串,只会在常量池中创建对象
String str8 = str7.intern();
System.out.println(str7 == str8);//true

String 真的不可变吗?

前面我们介绍了,String 类是用 final 关键字修饰的,所以我们认为其是不可变对象。但是真的不可变吗?

每个字符串都是由许多单个字符组成的,我们知道其源码是由 char[] value 字符数组构成。

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
    /** The value is used for character storage. */
    private final char value[];

    /** Cache the hash code for the string */
    private int hash; // Default to 0

value 被 final 修饰,只能保证引用不被改变,但是 value 所指向的堆中的数组,才是真实的数据,只要能够操作堆中的数组,依旧能改变数据。而且 value 是基本类型构成,那么一定是可变的,即使被声明为 private,我们也可以通过反射来改变。

String str = "vae";
//打印原字符串
System.out.println(str);//vae
//获取String类中的value字段 
Field fieldStr = String.class.getDeclaredField("value");
//因为value是private声明的,这里修改其访问权限
fieldStr.setAccessible(true);
//获取str对象上的value属性的值
char[] value = (char[]) fieldStr.get(str);
//将第一个字符修改为 V(小写改大写)
value[0] = 'V';
//打印修改之后的字符串
System.out.println(str);//Vae

通过前后两次打印的结果,我们可以看到 String 被改变了,但是在代码里,几乎不会使用反射的机制去操作 String 字符串,所以,我们会认为 String 类型是不可变的。

那么,String 类为什么要这样设计成不可变呢?我们可以从性能以及安全方面来考虑:

安全

  1. 引发安全问题,譬如,数据库的用户名、密码都是以字符串的形式传入来获得数据库的连接,或者在socket编程中,主机名和端口都是以字符串的形式传入。因为字符串是不可变的,所以它的值是不可改变的,否则黑客们可以钻到空子,改变字符串指向的对象的值,造成安全漏洞。

  2. 保证线程安全,在并发场景下,多个线程同时读写资源时,会引竞态条件,由于 String 是不可变的,不会引发线程的问题而保证了线程。

  3. HashCode,当 String 被创建出来的时候,hashcode也会随之被缓存,hashcode的计算与value有关,若String 可变,那么 hashcode 也会随之变化,针对于 Map、Set等容器,他们的键值需要保证唯一性和一致性,因此,String 的不可变性使其比其他对象更适合当容器的键值。

性能

当字符串是不可变时,字符串常量池才有意义。字符串常量池的出现,可以减少创建相同字面量的字符串,让不同的引用指向池中同一个字符串,为运行时节约很多的堆内存。若字符串可变,字符串常量池失去意义,基于常量池的String.intern()方法也失效,每次创建新的 String 将在堆内开辟出新的空间,占据更多的内存。

String,StringBuilder,StringBuffer三者的区别

参考:Java中的String,StringBuilder,StringBuffer三者的区别
java中String、StringBuffer、StringBuilder的区别

1 可变与不可变

因为有final修饰字符数组,所以可以知道string对象是不可变的。

private final char value[];

StringBuilder与StringBuffer都继承自AbstractStringBuilder类,在AbstractStringBuilder中也是使用字符数组保存字符串,如下就是,可知这两种对象都是可变的。

char[] value;

2 运行速度

先说结论,在这方面运行速度快慢为:StringBuilder > StringBuffer > String

为什么String是最慢的?String为字符串常量,而StringBuilder和StringBuffer均为字符串变量,即String对象一旦创建之后该对象是不可更改的,但后两者的对象是变量,是可以更改的。

Java中对String对象进行的操作实际上是一个不断创建新的对象并且将旧的对象回收的一个过程,所以执行速度很慢。

而StringBuilder和StringBuffer的对象是变量,对变量进行操作就是直接对该对象进行更改,而不进行创建和回收的操作,所以速度要比String快很多。

3 线程安全

在线程安全上,StringBuilder是线程不安全的,而StringBuffer,String是线程安全的

如果一个StringBuffer对象在字符串缓冲区被多个线程使用时,StringBuffer中很多方法可以带有synchronized关键字,所以可以保证线程是安全的,但StringBuilder的方法则没有该关键字,所以不能保证线程安全,有可能会出现一些错误的操作。所以如果要进行的操作是多线程的,那么就要使用StringBuffer,但是在单线程的情况下,还是建议使用速度比较快的StringBuilder。

总结:
String:适用于少量的字符串操作的情况

StringBuilder:适用于单线程下在字符缓冲区进行大量操作的情况

StringBuffer:适用多线程下在字符缓冲区进行大量操作的情况

转载至JDK1.8源码(三)——java.lang.String类

你可能感兴趣的:(Java基础)