C++中的RAII机制

什么是RAII?

RAII是Resource Acquisition Is Initialization(wiki上面翻译成 “资源获取就是初始化”)的简称,是C++语言的一种管理资源、避免泄漏的惯用法。利用的就是C++构造的对象最终会被销毁的原则。RAII的做法是使用一个对象,在其构造时获取对应的资源,在对象生命期内控制对资源的访问,使之始终保持有效,最后在对象析构的时候,释放构造时获取的资源。

为什么要使用RAII?

上面说到RAII是用来管理资源、避免资源泄漏的方法。那么,用了这么久了,也写了这么多程序了,口头上经常会说资源,那么资源是如何定义的?在计算机系统中,资源是数量有限且对系统正常运行具有一定作用的元素。比如:网络套接字、互斥锁、文件句柄和内存等等,它们属于系统资源。由于系统的资源是有限的,就好比自然界的石油,铁矿一样,不是取之不尽,用之不竭的,所以,我们在编程使用系统资源时,都必须遵循一个步骤:
1 申请资源;
2 使用资源;
3 释放资源。
第一步和第二步缺一不可,因为资源必须要申请才能使用的,使用完成以后,必须要释放,如果不释放的话,就会造成资源泄漏。

一个最简单的例子:

#include  

using namespace std; 

int main() 

{ 
    int *testArray = new int [10]; 
    // Here, you can use the array 
    delete [] testArray; 
    testArray = NULL ; 
    return 0; 
}

小结:
但是如果程序很复杂的时候,需要为所有的new 分配的内存delete掉,导致极度臃肿,效率下降,更可怕的是,程序的可理解性和可维护性明显降低了,当操作增多时,处理资源释放的代码就会越来越多,越来越乱。如果某一个操作发生了异常而导致释放资源的语句没有被调用,怎么办?这个时候,RAII机制就可以派上用场了。

如何使用RAII?

当我们在一个函数内部使用局部变量,当退出了这个局部变量的作用域时,这个变量也就别销毁了;当这个变量是类对象时,这个时候,就会自动调用这个类的析构函数,而这一切都是自动发生的,不要程序员显示的去调用完成。这个也太好了,RAII就是这样去完成的。

由于系统的资源不具有自动释放的功能,而C++中的类具有自动调用析构函数的功能。如果把资源用类进行封装起来,对资源操作都封装在类的内部,在析构函数中进行释放资源。当定义的局部变量的生命结束时,它的析构函数就会自动的被调用,如此,就不用程序员显示的去调用释放资源的操作了。

使用RAII 机制的代码:

#include  
using namespace std; 

class ArrayOperation 
{ 
public : 
    ArrayOperation() 
    { 
        m_Array = new int [10]; 
    } 

    void InitArray() 
    { 
        for (int i = 0; i < 10; ++i) 
        { 
            *(m_Array + i) = i; 
        } 
    } 

    void ShowArray() 
    { 
        for (int i = 0; i <10; ++i) 
        { 
            cout<

不使用RAII(没有使用类的思想)的代码

#include  
using namespace std; 

bool OperationA(); 
bool OperationB(); 

int main() 
{ 
    int *testArray = new int [10]; 

    // Here, you can use the array 
    if (!OperationA()) 
    { 
        // If the operation A failed, we should delete the memory 
        delete [] testArray; 
        testArray = NULL ; 
        return 0; 
    } 

    if (!OperationB()) 
    { 
        // If the operation A failed, we should delete the memory 
        delete [] testArray; 
        testArray = NULL ; 
        return 0; 
    } 

    // All the operation succeed, delete the memory 
    delete [] testArray; 
    testArray = NULL ; 
    return 0; 
} 

bool OperationA() 

{ 
    // Do some operation, if the operate succeed, then return true, else return false 
    return false ; 
} 

bool OperationB() 

{ 
    // Do some operation, if the operate succeed, then return true, else return false 
    return true ; 
}

上面这个例子没有多大的实际意义,只是为了说明RAII的机制问题。下面说一个具有实际意义的例子:

#include 
#include 
#include 

using namespace std;

CRITICAL_SECTION cs;
int gGlobal = 0;

class MyLock
{
public:
    MyLock()
    {
        EnterCriticalSection(&cs);
    }

    ~MyLock()
    {
        LeaveCriticalSection(&cs);
    }

private:
    MyLock( const MyLock &);
    MyLock operator =(const MyLock &);
};

void DoComplex(MyLock &lock ) // 非常感谢益可达犀利的review 2014.04.13
{
}

unsigned int __stdcall ThreadFun(PVOID pv) 
{
    MyLock lock;
    int *para = (int *) pv;

    // I need the lock to do some complex thing
    DoComplex(lock);

    for (int i = 0; i < 10; ++i)
    {
        ++gGlobal;
        cout<< "Thread " <<*para<

这个例子可以说是实际项目的一个模型,当多个进程访问临界变量时,为了不出现错误的情况,需要对临界变量进行加锁;上面的例子就是使用的Windows的临界区域实现的加锁。

但是,在使用CRITICAL_SECTION时,EnterCriticalSection和LeaveCriticalSection必须成对使用,很多时候,经常会忘了调用LeaveCriticalSection,此时就会发生死锁的现象。当我将对CRITICAL_SECTION的访问封装到MyLock类中时,之后,我只需要定义一个MyLock变量,而不必手动的去显示调用LeaveCriticalSection函数。

上述的两个例子都是RAII机制的应用,理解了上面的例子,就应该能理解了RAII机制的使用了。

你可能感兴趣的:(C++中的RAII机制)