pytorch神经网络模型会自动初始化嘛?

pytorch神经网络模型会自动初始化嘛?

搭好的神经网络,可以自定义初始化方法,如下方式:

from torch.nn import init
#define the initial function to init the layer's parameters for the network
def weigth_init(m):
    if isinstance(m, nn.Conv2d):
        init.xavier_uniform_(m.weight.data)
        init.constant_(m.bias.data,0.1)
    elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_()
    elif isinstance(m, nn.Linear):
        m.weight.data.normal_(0,0.01)
        m.bias.data.zero_()

当然你不初始化也可以,每一部分原生的网络模块都调用了初始化网络参数的函数,例如torch.nn.Linear的源码:

class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`

    Args:
        in_features: size of each input sample
        out_features: size of each output sample
        bias: If set to ``False``, the layer will not learn an additive bias.
            Default: ``True``

    Shape:
        - Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
          additional dimensions and :math:`H_{in} = \text{in\_features}`
        - Output: :math:`(N, *, H_{out})` where all but the last dimension
          are the same shape as the input and :math:`H_{out} = \text{out\_features}`.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math:`k = \frac{1}{\text{in\_features}}`
        bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:`bias` is ``True``, the values are initialized from
                :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
                :math:`k = \frac{1}{\text{in\_features}}`

    Examples::

        >>> m = nn.Linear(20, 30)
        >>> input = torch.randn(128, 20)
        >>> output = m(input)
        >>> print(output.size())
        torch.Size([128, 30])
    """
    __constants__ = ['bias', 'in_features', 'out_features']

    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound)

    def forward(self, input):
        return F.linear(input, self.weight, self.bias)

    def extra_repr(self):
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
        )

其中的reset_parameters就是初始化参数的方法~ 每个网络的初始化方法(采用正态分布还是均匀分布)都在pytorch官方文档里有所说明,自定义还是直接用内建初始化方法就看任务需要啦~( •̀∀•́ )~

你可能感兴趣的:(炼丹随笔)