- 计算机视觉入门
109702008
人工智能#深度学习计算机视觉人工智能
计算机视觉(ComputerVision)是一门涉及使机器能够从图像或者多维数据中提取信息,解释、理解并对物体或场景进行处理的学科。以下是一个基本的计算机视觉入门学习路线,旨在为刚刚接触这一领域的学习者提供指导。1.基础知识储备数学基础:线性代数、概率论和数理统计、微积分、优化理论。编程语言:掌握至少一门编程语言,Python是目前在计算机视觉领域最流行的语言,其次是C++。2.计算机视觉基础数字
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 新手村:统计量均值、中位数、标准差、四分位数
嘉羽很烦
机器学习均值算法算法
新手村:统计量均值、中位数、标准差、四分位数统计量定义与讲解统计量定义计算公式示例说明均值数据集中的所有数值之和除以数值的个数。Mean=∑i=1nxin\text{Mean}=\frac{\sum_{i=1}^{n}x_i}{n}Mean=n∑i=1nxi对于数据集[1,2,3,4,5],均值为(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3中位数将数据
- 第九届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组 递增三元组
徽京人
蓝桥解析蓝桥杯c语言c++
递增三元组题目描述给定三个整数数组A=[A1,A2,⋯AN]A=[A1,A2,⋯AN],B=[B1,B2,⋯BN]B=[B1,B2,⋯BN],C=[C1,C2,⋯CN]C=[C1,C2,⋯CN],请你统计有多少个三元组(i,j,k)(i,j,k)满足:1≤i,j,k≤N1≤i,j,k≤N;Aiusingnamespacestd;constintN=1e5+10;inta[N],b[N],c[N],
- MATLAB代码开发实战:从入门到高效应用
vvvae1234
matlab开发语言
一、MATLAB生态系统的核心优势(扩展原有内容,增加行业数据)MATLAB在全球工程领域的市场占有率已达67%(2024年IEEE统计),其核心优势体现在:矩阵运算速度比传统编程快3-5倍包含22个专业工具箱的完整工具链与硬件设备(如Arduino)的即插即用接口自动生成C/C++代码的部署能力案例佐证:2023年NASA火星探测器使用MATLAB/Simulink完成97%的导航算法验证二、代
- Redis缓存判断热点数据及进行数据预热的几种方式介绍
hxj..
分布式缓存redis数据库热点数据数据预热
Redis缓存如何判断热点数据?热点数据计算整体来讲就是基于访问频率,可以是整体的访问次数,可以是一定时间内的频率,可以是部分请求的采样,可以借助成熟工具等,要根据业务需求来定1.基于访问频率原理:通过统计每个键的访问频率(如每秒访问次数),识别出访问频率最高的数据。实现方法:使用Redis的INCR命令或监控工具(如RedisMonitor)统计键的访问频率。统计访问频率要确保并发场景下数据操作
- Python----数据分析(Pandas四:一维数组Series的统计计算,分组和聚合)
蹦蹦跳跳真可爱589
数据分析Pythonpandaspython数据分析
一、统计计算1.1、count用于计算Series中非NaN(非空)值的数量。importpandasaspds=pd.Series([1,2,None,4,None])count_non_na=s.count()print(count_non_na)1.2、sumsum()函数会计算所有值的总和。Series.sum(axis=None,skipna=True,numeric_only=None
- 订单管理系统,大学生数据结构期末作业/C语言实践作业
陌路物是人非
排序算法数据结构算法
任务:订单管理系统的设计与实现设计并实现一个订单管理系统界面分成两部分,分别是管理员和用户的界面主要功能:用户:(1)用户的登录及注册(2)用户信息修改(3)购买物品(4)充值(5)升序排序(按金额)物品管理员:(1)显示所有订单(2)插入订单信息(3)删除订单信息(4)排序订单(快排按编号)(5)统计订单信息(6)添加物品注意事项:一共需要建立4个文件(key.txt、物品清单.txt、用户信息
- Python3 【项目实战】深度解析:赛跑成绩统计分析工具
李智 - 重庆
Python精讲精练-从入门到实战python案例学习编程技巧时间处理项目实战
Python3【项目实战】深度解析:赛跑成绩统计分析工具一、项目概述1.开发背景:田径比赛的成绩统计需要快速准确的计算选手成绩,传统人工计时和统计效率低且易出错。本工具通过程序化处理赛跑数据,自动计算各选手成绩及整体统计指标,主要应用于:学校运动会成绩实时统计田径锦标赛的自动化成绩公示运动员训练数据分析2.技术定位:时间数据处理与统计计算的典型案例字典数据结构的实践应用面向过程编程的教学范例二、项
- ❤【纯干货】Matplotlib总结,任何项目都用得到❤
.Boss.
支持向量机人工智能算法机器学习python
.................❤纯干货❤..........目录1、绘制基本图形2、定制化图形3、支持多个坐标轴4、3D绘图5、动态交互绘图6、绘制地图7、绘制统计图表最后Matplotlib在很多人眼里是无敌的存在,而且可以说是无敌的存在。走过数据科学的路,路上必然有Matplotlib的风景在你周围。如果同一个项目,你的用了matplotlib不仅有基本图形、定制化图形、多个坐标轴、3D绘
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- 久违了,那书本的墨香!--- 闻华为新宇兄加班过劳致死有感
weixin_30765505
毕业两年了,如果不是试着去回顾,不会感觉时间流淌的这么快!我从来不否认自己怀旧,也时常在闲暇之余莫名地怀念那过去的人、景和事,尤其是那种在书海中浸淫的味道,那些纸面散发出的墨香,常引我心醉而神往!可是如今却成了那匆匆忙忙上班族中的普通一员,美其名曰:“白领”,实际上只不过去自欺欺人、聊以自慰的“头衔”罢了。每天超过十二小时面对电脑,专业人士提醒的“辐射量”我们自是无暇统计的,而眼前由英文字母、数字
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- 结构体6~10(2356. 成绩排序、1740. 统计每个数出现的次数、1940. 混合牛奶、1314. 仰卧起坐成绩统计、1953. 新生舞会、1346. 等比例缩放照片)
是帅帅的少年
东方博宜OJ题库解析算法数据结构
题单地址:题单中心-东方博宜OJ1372.活动选择在贪心专题有详细讲解:贪心1~7-CSDN博客2356.成绩排序问题描述(补充一道我觉得有代表性的题目)【具体要求】虽然现在学校已经不允许将学生每次的考试成绩公布,但是尽职尽责的班主任小青老师还是会私下将学生们的成绩排序,看看哪些学生进步了,哪些学生有所退步,针对退步的学生想一些提升方案。现在请你通过编程来帮助小青老师实现全班n位同学成绩的排名。排
- 华为OD机试 - 统计每个月兔子的总数(Python/JS/C/C++ 2023 B卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述有一种兔子,从出生后第3个月起每个月都生一只兔子,小兔子长到第三
- java Stream API中的聚合操作
27xixi
javajava18
聚合操作是指对一组数据进行处理,最终生成一个单一的结果。在编程中,聚合操作通常用于对集合(如列表、数组等)中的元素进行统计、计算或汇总。常见的聚合操作包括求和、求平均值、查找最大值/最小值、计数等。在Java的StreamAPI中,聚合操作是通过终端操作(TerminalOperations)来实现的。以下是一些常见的聚合操作及其用法:1.求和(Sum)对集合中的元素进行求和。示例:求整数列表的和
- LeetCode hot 100 每日一题(9)——560. 和为 K 的子数组
Awesome Baron
leetcodeleetcode算法职场和发展
这是一道难度为中等的题目,让我们来看看题目描述:给你一个整数数组nums和一个整数k,请你统计并返回该数组中和为k的子数组的个数。子数组是数组中元素的连续非空序列。示例1:输入:nums=[1,1,1],k=2输出:2示例2:输入:nums=[1,2,3],k=3输出:2提示:1=0;end--){sum+=nums[end];//累加当前子数组的元素到sumif(sum==k){//如果当前累加
- 提出机器人自主学习新范式,深大团队最新顶会论文,刷新6大复杂任务SOTA
量子位
关注前沿科技量子位让机器人轻松学习复杂技能有新框架了!深圳大学大数据系统计算技术国家工程实验室李坚强教授团队联合鹏城国家实验室、北京理工莫斯科大学,提出了奖励函数与策略协同进化框架ROSKA。在多个高维度机器人任务上,在仅使用89%训练样本的情况下,比现有SOTA方法平均性能提升95.3%。众所周知,随着机器人技术的快速发展,其应用已渗透至日常生活和工业生产场景。然而在多自由度机器人控制领域,传统
- 轻松管理CSV数据,Python csv库全解析
嘎啦AGI实验室
Pythonpythonandroid数据库Pythoncsv
文章目录轻松管理CSV数据,Pythoncsv库全解析背景介绍csv库是什么?如何安装csv库?五个简单的库函数使用方法1.读取CSV文件2.写入CSV文件3.使用DictReader读取CSV4.使用DictWriter写入CSV5.指定分隔符五个场景使用代码说明场景1:读取CSV并统计数据场景2:将查询结果写入CSV场景3:读取CSV并过滤数据场景4:读取CSV并排序数据场景5:读取CSV并合
- 关于scipy中uniform_filter函数的注意事项
明·煜
scipy
关于scipy中uniform_filter函数的注意事项在处理分组聚合问题时,有时需要使用均值作为统计量。那其实就是一个均值滤波问题。我不希望使用for循环和均值卷积核来对二维数组进行滤波,因为这个线性运算且可用通过数字搬移来实现。在使用uniform_filter时在边界处会出现难以解释的值,不过后来发现是我对python语法不够熟悉导致的。例如以下代码:importnumpyasnpx=np
- 物联网设备数据流转之搭建环境:开源高性能分布式支持SQL的时序数据库TDengine
Heartsuit
时序数据库物联网分布式TDengine涛思数据
背景我们的项目涉及物联网相关业务,由于一开始的年少无知,传感器数据采用了MySQL进行存储,经过近两年的数据累积,目前几个核心表,单表数据已过亿,虽然通过索引优化、SQL优化以及读写分离等措施,勉强满足基本的查询,能在秒级给出数据;但是一方面当前MySQL数据表索引的大小甚至超过了数据大小,这样下去肯定不行;另一方面来自于前端感知设备的数据量还在持续增加,当面对用户多维度的统计需求,在实现上、效率
- 虚幻引擎入门指南-世界构建建议
LiliaY
虚幻引擎入门指南unreal
1.选择工具快速选择一类快速选择使用某资产的actor统计数据面板也可以选择2.让草沉入地下,与地表垂直,并且向上生长
- Cohen‘s Kappa 系数(κ系数)
大霸王龙
系统分析业务深度学习分类系统架构人工智能
Cohen’sKappa系数(κ系数)是一种用于评估两个标注者(或分类器)之间一致性的统计指标,适用于分类任务。它考虑了随机一致性的影响,提供比简单的准确率(Accuracy)更可靠的评估方式。1.计算公式Cohen’sKappa计算方式如下:[\kappa=\frac{p_o-p_e}{1-p_e}]其中:(p_o)(ObservedAgreement):观察到的一致性,即两个标注者给出相同标签
- SvelteKit 最新中文文档教程(3)—— 数据加载
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- OTSU算法(大津算法)
天行者@
算法opencv人工智能二值化
Otsu算法(大津算法)是一种经典的图像二值化方法,其核心是通过最大化类间方差自动确定全局阈值。以下是其具体工作原理和步骤:1.基本思想假设图像由前景(目标)和背景两部分组成,且两者的灰度分布存在明显差异(直方图呈现双峰)。Otsu算法通过寻找一个阈值,使得前景与背景之间的类间方差最大,从而将图像分割为二值图。2.数学推导(1)计算灰度直方图统计图像中每个灰度值的像素个数,得到直方图h[i](i为
- 深入解析React 18核心特性:构建未来级Web应用的全面指南
斯~内克
react知识点前端react.js前端框架
一、React18的里程碑意义React18作为近年来最具革命性的版本更新,标志着前端开发正式进入并发渲染时代。这个版本不仅带来了底层架构的革新,更重新定义了现代Web应用的性能标准与开发范式。根据npm官方统计,React18发布首周下载量突破1800万次,GitHub星标数新增3.4万,充分展现了开发者社区对其技术价值的认可。二、架构革命:并发模式深度解析2.1并发渲染原理//传统同步渲染模式
- 计算机视觉算法实战——驾驶员玩手机检测(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法智能手机
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介:玩手机检测的重要性与技术挑战驾驶员玩手机检测是智能交通安全领域的核心课题。根据NHTSA数据,美国每年因手机使用导致的交通事故超过3000起,中国公安部的统计显示开车使用手机的事故率是正常驾驶的23倍。该技术通过实时监测驾驶员手部动作和视线方向,识别非法使用手机行为,在以
- 安全测试数据的分析、报告及业务应用
蚂蚁质量
安全测试质量体系安全网络web安全
一、安全测试指标与测量目标在风险分析和管理流程中,有效运用安全测试数据的前提是准确定义安全测试指标和测量目标。例如,通过统计安全测试中发现的漏洞总数,能够量化应用程序的安全状态,还可据此设定软件安全测试的目标,如在应用程序投入生产环境前,将漏洞数量降低至可接受的最低限度。另一个具有管理价值的目标是将应用程序的安全状态与安全基线进行对比,以此评估应用安全流程的改进情况。假设安全指标基线对应的是仅完成
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 利用python 执行统计模型:
渔好学
python
利用python执行统计模型:http://www.statsmodels.org/stable/index.html
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST