AggregateFunction 是什么
Flink 的AggregateFunction是一个基于中间计算结果状态进行增量计算的函数。由于是迭代计算方式,所以,在窗口处理过程中,不用缓存整个窗口的数据,所以效率执行比较高。
AggregateFunction定义
/**
* The {@code AggregateFunction} is a flexible aggregation function, characterized by the
* following features:
*
*
* - The aggregates may use different types for input values, intermediate aggregates,
* and result type, to support a wide range of aggregation types.
*
* - Support for distributive aggregations: Different intermediate aggregates can be
* merged together, to allow for pre-aggregation/final-aggregation optimizations.
*
*
* The {@code AggregateFunction}'s intermediate aggregate (in-progress aggregation state)
* is called the accumulator. Values are added to the accumulator, and final aggregates are
* obtained by finalizing the accumulator state. This supports aggregation functions where the
* intermediate state needs to be different than the aggregated values and the final result type,
* such as for example average (which typically keeps a count and sum).
* Merging intermediate aggregates (partial aggregates) means merging the accumulators.
*
*
The AggregationFunction itself is stateless. To allow a single AggregationFunction
* instance to maintain multiple aggregates (such as one aggregate per key), the
* AggregationFunction creates a new accumulator whenever a new aggregation is started.
*
*
Aggregation functions must be {@link Serializable} because they are sent around
* between distributed processes during distributed execution.
*
*
Example: Average and Weighted Average
*
* {@code
* // the accumulator, which holds the state of the in-flight aggregate
* public class AverageAccumulator {
* long count;
* long sum;
* }
*
* // implementation of an aggregation function for an 'average'
* public class Average implements AggregateFunction {
*
* public AverageAccumulator createAccumulator() {
* return new AverageAccumulator();
* }
*
* public AverageAccumulator merge(AverageAccumulator a, AverageAccumulator b) {
* a.count += b.count;
* a.sum += b.sum;
* return a;
* }
*
* public void add(Integer value, AverageAccumulator acc) {
* acc.sum += value;
* acc.count++;
* }
*
* public Double getResult(AverageAccumulator acc) {
* return acc.sum / (double) acc.count;
* }
* }
*
* // implementation of a weighted average
* // this reuses the same accumulator type as the aggregate function for 'average'
* public class WeightedAverage implements AggregateFunction {
*
* public AverageAccumulator createAccumulator() {
* return new AverageAccumulator();
* }
*
* public AverageAccumulator merge(AverageAccumulator a, AverageAccumulator b) {
* a.count += b.count;
* a.sum += b.sum;
* return a;
* }
*
* public void add(Datum value, AverageAccumulator acc) {
* acc.count += value.getWeight();
* acc.sum += value.getValue();
* }
*
* public Double getResult(AverageAccumulator acc) {
* return acc.sum / (double) acc.count;
* }
* }
* }
*
* @param The type of the values that are aggregated (input values)
* @param The type of the accumulator (intermediate aggregate state).
* @param The type of the aggregated result
*/
@PublicEvolving
public interface AggregateFunction extends Function, Serializable {
/**
* Creates a new accumulator, starting a new aggregate.
*
* The new accumulator is typically meaningless unless a value is added
* via {@link #add(Object, Object)}.
*
*
The accumulator is the state of a running aggregation. When a program has multiple
* aggregates in progress (such as per key and window), the state (per key and window)
* is the size of the accumulator.
*
* @return A new accumulator, corresponding to an empty aggregate.
*/
ACC createAccumulator();
/**
* Adds the given input value to the given accumulator, returning the
* new accumulator value.
*
*
For efficiency, the input accumulator may be modified and returned.
*
* @param value The value to add
* @param accumulator The accumulator to add the value to
*/
ACC add(IN value, ACC accumulator);
/**
* Gets the result of the aggregation from the accumulator.
*
* @param accumulator The accumulator of the aggregation
* @return The final aggregation result.
*/
OUT getResult(ACC accumulator);
/**
* Merges two accumulators, returning an accumulator with the merged state.
*
*
This function may reuse any of the given accumulators as the target for the merge
* and return that. The assumption is that the given accumulators will not be used any
* more after having been passed to this function.
*
* @param a An accumulator to merge
* @param b Another accumulator to merge
*
* @return The accumulator with the merged state
*/
ACC merge(ACC a, ACC b);
}
有定义可知,需要实现4个接口
- ACC createAccumulator(); 迭代状态的初始值
- ACC add(IN value, ACC accumulator); 每一条输入数据,和迭代数据如何迭代
- ACC merge(ACC a, ACC b); 多个分区的迭代数据如何合并
- OUT getResult(ACC accumulator); 返回数据,对最终的迭代数据如何处理,并返回结果。
下面是一个求平均值的demo
val input:DataStream[(String, Int)] = …………
val result: DataStream[Double] = input.keyBy(_._1)
// 设置窗口为滑动窗口,使用事件时间,窗口大小1小时,滑动步长10秒
.window(SlidingEventTimeWindows.of(Time.hours(1), Time.seconds(10)))
.aggregate(new AggregateFunction[(String, Int), (Int, Int), Double] {
// 迭代的初始值
override def createAccumulator(): (Int, Int) = (0, 0)
// 每一个数据如何和迭代数据 迭代
override def add(value: (Int, Int), accumulator: (Int, Int)): (Int, Int) = (accumulator._1 + value._1, accumulator._2 + 1)
// 每个分区数据之间如何合并数据
override def merge(a: (Int, Int), b: (Int, Int)): (Int, Int) = (a._1 + b._1, a._2 + b._2)
})
// 返回结果
override def getResult(accumulator: (Int, Int)): Double = accumulator._1 / accumulator._2
上面的代码,输入的数据是(String,Int)。String可以认为是key,Int可以认为是分数。
aggregate执行过程讲解
以上面的demo为例讲解。
- 给定迭代初始值 (0, 0)。 元组 第一个记录分数,第二个记录数据条数
- 输入的数据,获取分数,累加到迭代值元组的第一个元素中,迭代值元组的第二个值记录条数加1 。
- 每一个分区迭代完毕后,各分区的迭代值合并成最终的迭代值
- 对最终的迭代处理,获取最终的输出结果。