视觉里程计02 基于特征匹配的位姿估计

概述

  • 特征点的投影模型为 \(p=\frac{1}{Z} KP\)\(P\)为世界坐标系下某点的坐标(\(Z\)为z方向的坐标),\(p\)为对应图像特征点。\(K\)为内参,在标定好的相机下,\(K\)已知
  • 根据对极几何约束,假设\(p_{2}\)为相机位姿运动\(R\)\(t\)后与前一帧的特征点\(p_{1}\)匹配的特征点,则有
    \[s_1p_1 = KP\]
    \[s_2p_2 = K(RP+t)\]
  • 参考视觉slam14讲的推导,这里可以得到对极约束
    \[{p}_2^T{K^{ - T}}{t^ \wedge }RK{H^{ - 1}}{p_1} = 0\]
    可以通过8点法求解本质矩阵进而得到\(R\)\(t\)
  • 每两帧之间的位姿递推误差积累很快,因此直接递推的位姿是不太稳定的。
  • \(t\)的缩放尺寸不确定,因此不能获得绝对位置

测试代码

主要基于视觉slam14讲的代码,稍微改动的测试,尽管能够求解姿态但是并不十分准确,后续考虑使用双目相机实现定位功能

#include 
#include 
#include 
#include 
#include "opencv2/features2d/features2d.hpp"
#include 
#include 
#include 
#include 
//#include "stdafx.h"

using namespace cv;
using namespace std;

void find_feature_matches(
    const Mat& img_1, const Mat& img_2,
    std::vector& keypoints_1,
    std::vector& keypoints_2,
    std::vector< DMatch >& matches);

void pose_estimation_2d2d(
    std::vector keypoints_1,
    std::vector keypoints_2,
    std::vector< DMatch > matches,
    Mat& R, Mat& t);

// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d& p, const Mat& K);


int main()
{
    VideoCapture cap1;
    //VideoCapture cap2;
    cap1.open(1);//白色摄像头
    //cap2.open(2);//黑色摄像头
    //if (!cap1.isOpened()||!cap2.isOpened())
    if (!cap1.isOpened())
    {
        return -1;
    }
    //将摄像头从640*480改成320*240,速度从200ms提升至50ms
    //cap1.set(CV_CAP_PROP_FRAME_WIDTH, 320);
    //cap1.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
    
    //cap2.set(CV_CAP_PROP_FRAME_WIDTH, 320);
    //cap2.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
    //namedWindow("Video", 1);
    //namedWindow("Video", 2);
    //namedWindow("pts", 3);
    //Mat frame;
    
    Mat img_1;
    Mat img_2;
    while (1)
    {
        cap1 >> img_1;
        Sleep(10);
        cap1 >> img_2;
        if (!img_1.data || !img_2.data)
        {
            cout << "error reading images " << endl;
            return -1;
        }
        vector keypoints_1, keypoints_2;
        vector matches;
        find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
        //cout << "一共找到了" << matches.size() << "组匹配点" << endl;

        //-- 估计两张图像间运动
        Mat R, t;
        pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);
        //cout << "R:" << endl << R << endl;
        //cout << "t:" << endl << t << endl;
        ////-- 验证E=t^R*scale
        //Mat t_x = (Mat_(3, 3) <<
        //  0, -t.at(2, 0), t.at(1, 0),
        //  t.at(2, 0), 0, -t.at(0, 0),
        //  -t.at(1.0), t.at(0, 0), 0);

        //cout << "t^R=" << endl << t_x*R << endl;

        ////-- 验证对极约束
        //Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
        //for (DMatch m : matches)
        //{
        //  Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
        //  Mat y1 = (Mat_(3, 1) << pt1.x, pt1.y, 1);
        //  Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
        //  Mat y2 = (Mat_(3, 1) << pt2.x, pt2.y, 1);
        //  Mat d = y2.t() * t_x * R * y1;
        //  cout << "epipolar constraint = " << d << endl;
        //}
        waitKey(1);
    }
    cap1.release();
    //cap2.release();
    return 0;
}

void find_feature_matches(const Mat& img_1, const Mat& img_2,
    std::vector& keypoints_1,
    std::vector& keypoints_2,
    std::vector< DMatch >& matches)
{
    //-- 初始化
    Mat descriptors_1, descriptors_2;
    // used in OpenCV3 
    Ptr detector = ORB::create();
    Ptr descriptor = ORB::create();
    // use this if you are in OpenCV2 
    // Ptr detector = FeatureDetector::create ( "ORB" );
    // Ptr descriptor = DescriptorExtractor::create ( "ORB" );
    Ptr matcher = DescriptorMatcher::create("BruteForce-Hamming");
    //-- 第一步:检测 Oriented FAST 角点位置
    detector->detect(img_1, keypoints_1);
    detector->detect(img_2, keypoints_2);

    //-- 第二步:根据角点位置计算 BRIEF 描述子
    descriptor->compute(img_1, keypoints_1, descriptors_1);
    descriptor->compute(img_2, keypoints_2, descriptors_2);

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
    vector match;
    //BFMatcher matcher ( NORM_HAMMING );
    matcher->match(descriptors_1, descriptors_2, match);

    //-- 第四步:匹配点对筛选
    double min_dist = match[0].distance, max_dist = match[0].distance;

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
    for (int i = 0; i < descriptors_1.rows; i++)
    {
        double dist = match[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
    }

    //printf("-- Max dist : %f \n", max_dist);
    //printf("-- Min dist : %f \n", min_dist);

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
    for (int i = 0; i < descriptors_1.rows; i++)
    {
        if (match[i].distance <= max(2 * min_dist, 30.0))
        {
            matches.push_back(match[i]);
        }
    }
}


Point2d pixel2cam(const Point2d& p, const Mat& K)
{
    return Point2d
    (
        (p.x - K.at(0, 2)) / K.at(0, 0),
        (p.y - K.at(1, 2)) / K.at(1, 1)
    );
}


void pose_estimation_2d2d(std::vector keypoints_1,
    std::vector keypoints_2,
    std::vector< DMatch > matches,
    Mat& R, Mat& t)
{
    // 相机内参,需要标定得到
    /*1225.22831056496  36.6177252813478    342.784169613124
        0   1178.20016318321    187.290755011276
        0   0   1*/
    /*1296.76842892674  46.6256354215592    409.717933143672
        0   1210.08953016730    69.8389243159229
        0   0   1*/
    //Mat K = (Mat_(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
    Mat K = (Mat_(3, 3) << 1296.76842892674, 46.6256354215592, 409.717933143672, 0, 1210.08953016730, 69.8389243159229, 0, 0, 1);

    //-- 把匹配点转换为vector的形式
    vector points1;
    vector points2;

    for (int i = 0; i < (int)matches.size(); i++)
    {
        points1.push_back(keypoints_1[matches[i].queryIdx].pt);
        points2.push_back(keypoints_2[matches[i].trainIdx].pt);
    }

    //-- 计算基础矩阵
    Mat fundamental_matrix;
    fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT);
    //cout << "fundamental_matrix is " << endl << fundamental_matrix << endl;

    //-- 计算本质矩阵
    Point2d principal_point(409.717933143672, 69.8389243159229);    //相机光心, 标定值
    double focal_length = 1296.76842892674;         //相机焦距, 标定值
    Mat essential_matrix;
    essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
    //cout << "essential_matrix is " << endl << essential_matrix << endl;

    //-- 计算单应矩阵
    Mat homography_matrix;
    homography_matrix = findHomography(points1, points2, RANSAC, 3);
    //cout << "homography_matrix is " << endl << homography_matrix << endl;

    //-- 从本质矩阵中恢复旋转和平移信息.
    recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
    //cout << "R is " << endl << R << endl;
    //cout << "t is " << endl << t << endl;
    cout << R << endl;
}

转载于:https://www.cnblogs.com/RegressionWorldLine/p/7554709.html

你可能感兴趣的:(视觉里程计02 基于特征匹配的位姿估计)