作者|Garima Singh 编译|VK 来源|Git Connected
以前照相从来没有那么容易。现在你只需要一部手机。拍照是免费的,如果我们不考虑手机的费用的话。就在上一代人之前,业余艺术家和真正的艺术家如果拍照非常昂贵,并且每张照片的成本也不是免费的。
我们拍照是为了及时保存伟大的时刻,被保存的记忆随时准备在未来被"打开"。
就像腌制东西一样,我们要注意正确的防腐剂。当然,手机也为我们提供了一系列的图像处理软件,但是一旦我们需要处理大量的照片,我们就需要其他的工具。这时,编程和Python就派上用场了。Python及其模块如Numpy、Scipy、Matplotlib和其他特殊模块提供了各种各样的函数,能够处理大量图片。
为了向你提供必要的知识,本章的Python教程将处理基本的图像处理和操作。为此,我们使用模块NumPy、Matplotlib和SciPy。
我们从scipy包misc开始。
# 以下行仅在Python notebook中需要:
%matplotlib inline
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.gray()
plt.imshow(ascent)
plt.show()
除了图像之外,我们还可以看到带有刻度的轴。这可能是非常有趣的,如果你需要一些关于大小和像素位置的方向,但在大多数情况下,你想看到没有这些信息的图像。我们可以通过添加命令plt.axis("off")
来去掉刻度和轴:
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.axis("off") # 删除轴和刻度
plt.gray()
plt.imshow(ascent)
plt.show()
我们可以看到这个图像的类型是一个整数数组:
ascent.dtype
输出:
dtype('int64')
我们也可以检查图像的大小:
ascent.shape
输出:
(512,512)
misc包里还有一张浣熊的图片:
import scipy.misc
face = scipy.misc.face()
print(face.shape)
print(face.max)
print(face.dtype)
plt.axis("off")
plt.gray()
plt.imshow(face)
plt.show()
(768, 1024, 3)
uint8
import matplotlib.pyplot as plt
matplotlib只支持png图像
img = plt.imread('frankfurt.png')
print(img[:3])
[[[ 0.41176471 0.56862748 0.80000001]
[ 0.40392157 0.56078434 0.79215688]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.47843137 0.627451 0.81960785]
[ 0.47843137 0.62352943 0.82745099]]
[[ 0.40784314 0.56470591 0.79607844]
[ 0.40392157 0.56078434 0.79215688]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.47843137 0.627451 0.81960785]
[ 0.48235294 0.627451 0.83137256]]
[[ 0.40392157 0.56862748 0.79607844]
[ 0.40392157 0.56862748 0.79607844]
[ 0.40392157 0.56862748 0.79607844]
...,
[ 0.48235294 0.62352943 0.81960785]
[ 0.48235294 0.62352943 0.81960785]
[ 0.48627451 0.627451 0.83137256]]]
plt.axis("off")
imgplot = plt.imshow(img)
lum_img = img[:,:,1]
print(lum_img)
[[ 0.56862748 0.56078434 0.56862748 ..., 0.62352943 0.627451
0.62352943]
[ 0.56470591 0.56078434 0.56862748 ..., 0.62352943 0.627451 0.627451 ]
[ 0.56862748 0.56862748 0.56862748 ..., 0.62352943 0.62352943
0.627451 ]
...,
[ 0.31764707 0.32941177 0.32941177 ..., 0.30588236 0.3137255
0.31764707]
[ 0.31764707 0.3137255 0.32941177 ..., 0.3019608 0.32156864
0.33725491]
[ 0.31764707 0.3019608 0.33333334 ..., 0.30588236 0.32156864
0.33333334]]
plt.axis("off")
imgplot = plt.imshow(lum_img)
现在,我们将展示如何给图像着色。色彩是色彩理论的一种表达,是画家常用的一种技法。想到画家而不想到荷兰是很难想象的。所以在下一个例子中,我们使用荷兰风车的图片。
windmills = plt.imread('windmills.png')
plt.axis("off")
plt.imshow(windmills)
输出:
我们现在想给图像着色。我们用白色,这将增加图像的亮度。为此,我们编写了一个Python函数,它接受一个图像和一个百分比值作为参数。设置"百分比"为0不会改变图像,设置为1表示图像将完全变白:
import numpy as np
import matplotlib.pyplot as plt
def tint(imag, percent):
"""
imag: 图像
percent: 0,图像将保持不变,1,图像将完全变白色,值应该在0~1
"""
tinted_imag = imag + (np.ones(imag.shape) - imag) * percent
return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = tint(windmills, 0.8)
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
阴影是一种颜色与黑色的混合,它减少了亮度。
import numpy as np
import matplotlib.pyplot as plt
def shade(imag, percent):
"""
imag: 图像
percent: 0,图像将保持不变,1,图像将完全变黑,值应该在0~1
"""
tinted_imag = imag * (1 - percent)
return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = shade(windmills, 0.7)
plt.imshow(tinted_windmills)
输出:
def vertical_gradient_line(image, reverse=False):
"""
我们创建一个垂直梯度线。形状 (1, image.shape[1], 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_columns = image.shape[1]
if reverse:
C = np.linspace(1, 0, number_of_columns)
else:
C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C
horizontal_brush = vertical_gradient_line(windmills)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
现在,我们将通过将Python函数的reverse参数设置为“True”来从右向左着色图像:
def vertical_gradient_line(image, reverse=False):
"""
我们创建一个水平梯度线。形状 (1, image.shape[1], 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_columns = image.shape[1]
if reverse:
C = np.linspace(1, 0, number_of_columns)
else:
C = np.linspace(0, 1, number_of_columns)
C = np.dstack((C, C, C))
return C
horizontal_brush = vertical_gradient_line(windmills, reverse=True)
tinted_windmills = windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)
输出:
def horizontal_gradient_line(image, reverse=False):
"""
我们创建一个垂直梯度线。形状(image.shape[0], 1, 3))
如果reverse为False,则值从0增加到1,
否则,值将从1递减到0。
"""
number_of_rows, number_of_columns = image.shape[:2]
C = np.linspace(1, 0, number_of_rows)
C = C[np.newaxis,:]
C = np.concatenate((C, C, C)).transpose()
C = C[:, np.newaxis]
return C
vertical_brush = horizontal_gradient_line(windmills)
tinted_windmills = windmills
plt.imshow(tinted_windmills)
输出:
色调是由一种颜色与灰色的混合产生的,或由着色和阴影产生的。
charlie = plt.imread('Chaplin.png')
plt.gray()
print(charlie)
plt.imshow(charlie)
[[ 0.16470589 0.16862746 0.17647059 ..., 0. 0. 0. ]
[ 0.16078432 0.16078432 0.16470589 ..., 0. 0. 0. ]
[ 0.15686275 0.15686275 0.16078432 ..., 0. 0. 0. ]
...,
[ 0. 0. 0. ..., 0. 0. 0. ]
[ 0. 0. 0. ..., 0. 0. 0. ]
[ 0. 0. 0. ..., 0. 0. 0. ]]
输出:
给灰度图像着色:http://scikit-image.org/docs/dev/auto_examples/plot_tinting_grayscale_images.html
在下面的示例中,我们将使用不同的颜色映射。颜色映射可以在matplotlib.pyplot.cm.datad中找到:
plt.cm.datad.keys()
输出:
dict_keys(['afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 'CMRmap', 'cool', 'copper', 'cubehelix', 'flag', 'gnuplot', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'spring', 'summer', 'terrain', 'winter', 'nipy_spectral', 'spectral', 'Blues', 'BrBG', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PiYG', 'PRGn', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'gist_earth', 'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'coolwarm', 'Wistia', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c', 'afmhot_r', 'autumn_r', 'bone_r', 'binary_r', 'bwr_r', 'brg_r', 'CMRmap_r', 'cool_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gnuplot_r', 'gnuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismic_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'nipy_spectral_r', 'spectral_r', 'Blues_r', 'BrBG_r', 'BuGn_r', 'BuPu_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'Oranges_r', 'OrRd_r', 'PiYG_r', 'PRGn_r', 'PuBu_r', 'PuBuGn_r', 'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdPu_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'gist_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gist_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'coolwarm_r', 'Wistia_r', 'Accent_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r', 'tab20c_r', 'Vega10_r', 'Vega20_r', 'Vega20b_r', 'Vega20c_r'])
import numpy as np
import matplotlib.pyplot as plt
charlie = plt.imread('Chaplin.png')
# colormaps plt.cm.datad
# cmaps = set(plt.cm.datad.keys())
cmaps = {'afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg',
'CMRmap', 'cool', 'copper', 'cubehelix', 'Greens'}
X = [ (4,3,1, (1, 0, 0)), (4,3,2, (0.5, 0.5, 0)), (4,3,3, (0, 1, 0)),
(4,3,4, (0, 0.5, 0.5)), (4,3,(5,8), (0, 0, 1)), (4,3,6, (1, 1, 0)),
(4,3,7, (0.5, 1, 0) ), (4,3,9, (0, 0.5, 0.5)),
(4,3,10, (0, 0.5, 1)), (4,3,11, (0, 1, 1)), (4,3,12, (0.5, 1, 1))]
fig = plt.figure(figsize=(6, 5))
#fig.subplots_adjust(bottom=0, left=0, top = 0.975, right=1)
for nrows, ncols, plot_number, factor in X:
sub = fig.add_subplot(nrows, ncols, plot_number)
sub.set_xticks([])
plt.colors()
sub.imshow(charlie*0.0002, cmap=cmaps.pop())
sub.set_yticks([])
#fig.show()
原文链接:https://levelup.gitconnected.com/image-processing-in-python-b5e3e11e1413
欢迎关注磐创AI博客站: http://panchuang.net/
sklearn机器学习中文官方文档: http://sklearn123.com/
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/