polyfit()函数可以使用最小二乘法将一些点拟合成一条曲线.
numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
# x:要拟合点的横坐标
# y:要拟合点的纵坐标
# deg:自由度.例如:自由度为2,那么拟合出来的曲线就是二次函数,自由度是3,拟合出来的曲线就是3次函数
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-1, 1, 0.02)
y = 2 * np.sin(x * 2.3) + np.random.rand(len(x))
然后打印一下看看
plt.scatter(x, y)
plt.show()
parameter = np.polyfit(x, y, 3)
y2 = parameter[0] * x ** 3 + parameter[1] * x ** 2 + parameter[2] * x + parameter[3]
将拟合后的结果打印一下
plt.scatter(x, y)
plt.plot(x, y2, color='g')
plt.show()
p = np.poly1d(parameter)
plt.scatter(x, y)
plt.plot(x, p(x), color='g')
plt.show()
二维散点进行任意函数的最小二乘拟合
最小二乘中相关系数与R方的关系推导
其中,
correlation = np.corrcoef(y, y2)[0,1] #相关系数
correlation**2 #R方
p = np.poly1d(parameter,variable='x')
print(p)
输出为
这里是把结果输出到两行里了,但是输出到两行是非常不方便的
parameter=[-2.44919641, -0.01856314, 4.12010434, 0.47296566] #系数
aa=''
deg=3
for i in range(deg+1):
bb=round(parameter[i],2) #bb是i次项系数
if bb>=0:
if i==0:
bb=str(bb)
else:
bb=' +'+str(bb)
else:
bb=' '+str(bb)
if deg==i:
aa=aa+bb
else:
aa=aa+bb+'x^'+str(deg-i)
print(aa)
def Curve_Fitting(x,y,deg):
parameter = np.polyfit(x, y, deg) #拟合deg次多项式
p = np.poly1d(parameter) #拟合deg次多项式
aa='' #方程拼接 ——————————————————
for i in range(deg+1):
bb=round(parameter[i],2)
if bb>0:
if i==0:
bb=str(bb)
else:
bb='+'+str(bb)
else:
bb=str(bb)
if deg==i:
aa=aa+bb
else:
aa=aa+bb+'x^'+str(deg-i) #方程拼接 ——————————————————
plt.scatter(x, y) #原始数据散点图
plt.plot(x, p(x), color='g') # 画拟合曲线
# plt.text(-1,0,aa,fontdict={'size':'10','color':'b'})
plt.legend([aa,round(np.corrcoef(y, p(x))[0,1]**2,2)]) #拼接好的方程和R方放到图例
plt.show()
# print('曲线方程为:',aa)
# print(' r^2为:',round(np.corrcoef(y, p(x))[0,1]**2,2))
Curve_Fitting(x,y,3)