2009年9月刊《程序员》算法题之我见——思索之一

本系列文章目录

  1. 2009年9月刊《程序员》算法题之我见——思索之一
  2. 2009年9月刊《程序员》算法题之我见——思索之二
  3. 20099月刊《程序员》算法题之我见——思索之三

 

 

20099月刊《程序员》算法题之我见——思索之一

笔者业余时间喜欢研究一些算法,也经常的阅读各类计算机杂志并对其中的算法题研究考量一番

翻阅了20099月刊《程序员》,其中的一道算法题吸引了我。虽然至今还没有理解透,但是也小有心得。拿在这个和大家交流一番。

先把题目复述一遍。

 

如何为实习生安排座位

有道最近招聘了一批实习生,给他们安排座位时遇到一个有趣的问题。办公室有N排,每排有M个座位。为了方便实习生和全职员工更好的交流,安排座位时,我们不让任何2个实习生座位水平、竖直、或者对角线相邻。求满足安排方案的总数。

 

文章最后给了一个测试条件:M=15N=150,每排4人,求方案总数。

 

文章给了3个解决方案。可惜本人愚笨,没有能力参悟,只有自己一个人抽丝剥茧,层层深入,期待有朝一日,能够理解透。

 

为了描述方便,一共有N排,每排M个座位,每排安排P个实习生

 

问题一,M=15,则P最大为多少?毫无疑问P最大为8人。

而且这8人只有一种安排法

如图

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

示意图,红色表示实习生

 

问题二,M=SP最大为多少?

参照问题一,可知,当S为奇数时,P最大为(S+1/2;当S为偶数时,P最大为S/2

 

问题三,M=15N=1P=4,安排方案总数?

用一个函数表示安排总数FMP),其中M为座位数,P为人数,返回的是方案总数

不难理解,本题就是计算F154

而且,F还满足递归,即

F154=F133+F123+F113)……+F13

 

那么,很容易的,该函数马上就能用代码表示出来

 

Private Function F(ByVal M As Integer, ByVal P As Integer) As Integer

        If P <= 0 OrElse M <= 0 Then Return 0

 

        If P = 1 Then Return M

 

        If P * 2 = M + 1 Then Return 1

        If P * 2 > M + 1 Then Return 0

 

        Dim i As Integer, S As Integer, tS As Integer

        S = 0

 

        For i = M - 2 To 1 Step -1

            tS = F(i, P - 1)

            If tS = 0 Then

                Return S

            Else

                S += tS

            End If

        Next

 

        Return S

    End Function

 

经计算,F154=495,所以本问题的解为495

 

问题四,M=15N=2P=4,安排方案总数?

由问题三可知,每排的可能性有495种,是不是意味着两排就一定是4952种呢?很显然,不是的。因为这两排彼此之间还互相有影响。下面举两个例子

例子一:下面这个情况就不符合题意

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

示意图,红色表示实习生

 

例子二:下面这个情况就符合题意

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

示意图,红色表示实习生

可见,对于第一行的每种情况,第二行并不完全都符合,还得分情况考虑。如果执着于分情况考虑,未免工作量太大。

仔细观察例子二情况,突然发现如果将两排压缩为一排的话,正好是问题一的图。而例子一压缩为一排的话,就不是问题一的图。

于是,基于此,提出一个假设。

该问题的每一个解都能压缩成问题一的图,而本题的每一个不成立的解都压不成问题一的解。也就是说,把问题一的图中随机选出四个位置作为第一排的情况,则另外四个位置就是第二排的情况。

则本题的答案就很明了了,C84=70种,C表示组合函数,这里就不详细解释了。

 

问题五:M=15N=150P=4,求方案总数

这是一开始的测试情况。也是问题四的延伸。这样想,第一排的位置定下来的话,第二排就一种情况。这是问题四的解。同时,第三排也就一种情况,和第一排相同,第四排受第三排的影响,也是一种情况,和第二排相同。以此类推,本题的解就是问题四的解C84=70种。

 

暂且思考到这儿,先把测试的情况计算出来。这个思路对其他的情况有着参考的作用。日后再撰文,与大家交流。

你可能感兴趣的:(算法,integer,function,测试,招聘,工作)