本章将把积分概念推广到积分范围为一段曲线弧或一片曲面的情形(这样推广后的积分称为曲线积分和曲面积分),并阐明有关这两种积分的一些基本内容。——高等数学同济版
本节主要介绍了对弧长的曲线积分的基本计算。
解 设质心位置为 ( x ‾ , y ‾ , z ‾ ) (\overline{x},\overline{y},\overline{z}) (x,y,z)。
M = ∫ L ρ ( x , y , z ) d s = ∫ L x 2 + y 2 + z 2 d s = ∫ 0 2 π ( a 2 + k 2 t 2 ) a 2 + k 2 d t = 2 3 π a 2 + k 2 ( 3 a 2 + 4 π 2 k 2 ) , x ‾ = 1 M ∫ L x ρ ( x , y , z ) d s = 1 M ∫ L x ( x 2 + y 2 + z 2 ) d s = 1 M ∫ 0 2 π a cos t ( a 2 + k 2 t 2 ) ⋅ a 2 + k 2 d t = a a 2 + k 2 M ∫ 0 2 π ( a 2 + k 2 t 2 ) a cos t d t . \begin{aligned} M&=\displaystyle\int\limits_{L}\rho(x,y,z)\mathrm{d}s=\displaystyle\int\limits_{L}x^2+y^2+z^2\mathrm{d}s\\ &=\displaystyle\int^{2\pi}_0(a^2+k^2t^2)\sqrt{a^2+k^2}\mathrm{d}t\\ &=\cfrac{2}{3}\pi\sqrt{a^2+k^2}(3a^2+4\pi^2k^2), \end{aligned}\\ \begin{aligned} \overline{x}&=\cfrac{1}{M}\displaystyle\int\limits_{L}x\rho(x,y,z)\mathrm{d}s=\cfrac{1}{M}\displaystyle\int\limits_{L}x(x^2+y^2+z^2)\mathrm{d}s\\ &=\cfrac{1}{M}\displaystyle\int^{2\pi}_0a\cos t(a^2+k^2t^2)\cdot\sqrt{a^2+k^2}\mathrm{d}t\\ &=\cfrac{a\sqrt{a^2+k^2}}{M}\displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\cos t\mathrm{d}t. \end{aligned} M=L∫ρ(x,y,z)ds=L∫x2+y2+z2ds=∫02π(a2+k2t2)a2+k2dt=32πa2+k2(3a2+4π2k2),x=M1L∫xρ(x,y,z)ds=M1L∫x(x2+y2+z2)ds=M1∫02πacost(a2+k2t2)⋅a2+k2dt=Maa2+k2∫02π(a2+k2t2)acostdt.
由于
∫ 0 2 π ( a 2 + k 2 t 2 ) a cos t d t = [ ( a 2 + k 2 t 2 ) sin t ] ∣ 0 2 π − ∫ 0 2 π sin t ⋅ 2 k 2 t d t = [ 2 k 2 t cos t ] ∣ 0 2 π − ∫ 0 2 π 2 k 2 cos t d t = 4 π k 2 . \begin{aligned} \displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\cos t\mathrm{d}t&=[(a^2+k^2t^2)\sin t]\biggm\vert^{2\pi}_0-\displaystyle\int^{2\pi}_0\sin t\cdot2k^2t\mathrm{d}t\\ &=[2k^2t\cos t]\biggm\vert^{2\pi}_0-\displaystyle\int^{2\pi}_02k^2\cos t\mathrm{d}t=4\pi k^2. \end{aligned} ∫02π(a2+k2t2)acostdt=[(a2+k2t2)sint]∣∣∣∣02π−∫02πsint⋅2k2tdt=[2k2tcost]∣∣∣∣02π−∫02π2k2costdt=4πk2.
因此
x ‾ = a a 2 + k 2 ⋅ 4 π k 2 2 3 π a 2 + k 2 ( 3 a 2 + 4 π 2 k 2 ) = 6 a k 2 3 a 2 + 4 π 2 k 2 . \overline{x}=\cfrac{a\sqrt{a^2+k^2}\cdot4\pi k^2}{\cfrac{2}{3}\pi\sqrt{a^2+k^2}(3a^2+4\pi^2k^2)}=\cfrac{6ak^2}{3a^2+4\pi^2k^2}. x=32πa2+k2(3a2+4π2k2)aa2+k2⋅4πk2=3a2+4π2k26ak2.
类似的,
y ‾ = 1 M ∫ L y ( x 2 + y 2 + z 2 ) d s = a a 2 + k 2 M ∫ 0 2 π ( a 2 + k 2 t 2 ) a sin t d t = a a 2 + k 2 ⋅ ( − 4 π k 2 ) M = − 6 a k 2 3 a 2 + 4 π 2 k 2 . z ‾ = 1 M ∫ L z ( x 2 + y 2 + z 2 ) d s = k a 2 + k 2 M ∫ 0 2 π ( a 2 + k 2 t 2 ) a sin t d t = k a 2 + k 2 ⋅ ( 2 a 2 π 2 + 4 π k 2 ) M = 3 π k ( a 2 + 4 k 2 π 4 ) 3 a 2 + 4 π 2 k 2 . \begin{aligned} \overline{y}&=\cfrac{1}{M}\displaystyle\int\limits_{L}y(x^2+y^2+z^2)\mathrm{d}s=\cfrac{a\sqrt{a^2+k^2}}{M}\displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\sin t\mathrm{d}t\\ &=\cfrac{a\sqrt{a^2+k^2}\cdot(-4\pi k^2)}{M}=\cfrac{-6ak^2}{3a^2+4\pi^2k^2}. \end{aligned}\\ \begin{aligned} \overline{z}&=\cfrac{1}{M}\displaystyle\int\limits_{L}z(x^2+y^2+z^2)\mathrm{d}s=\cfrac{k\sqrt{a^2+k^2}}{M}\displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\sin t\mathrm{d}t\\ &=\cfrac{k\sqrt{a^2+k^2}\cdot(2a^2\pi^2+4\pi k^2)}{M}=\cfrac{3\pi k(a^2+4k^2\pi^4)}{3a^2+4\pi^2k^2}. \end{aligned} y=M1L∫y(x2+y2+z2)ds=Maa2+k2∫02π(a2+k2t2)asintdt=Maa2+k2⋅(−4πk2)=3a2+4π2k2−6ak2.z=M1L∫z(x2+y2+z2)ds=Mka2+k2∫02π(a2+k2t2)asintdt=Mka2+k2⋅(2a2π2+4πk2)=3a2+4π2k23πk(a2+4k2π4).
(这道题主要利用了参数方程的曲线积分求解)
本节主要介绍了对坐标的曲线积分的计算。
解 d x d t = 1 \cfrac{\mathrm{d}x}{\mathrm{d}t}=1 dtdx=1, d y d t = 2 t = 2 x \cfrac{\mathrm{d}y}{\mathrm{d}t}=2t=2x dtdy=2t=2x, d z d t = 3 t 2 = 3 y \cfrac{\mathrm{d}z}{\mathrm{d}t}=3t^2=3y dtdz=3t2=3y,注意到参数 t t t由小变到大,因此 Γ \varGamma Γ的切向量的方向余弦为
cos α = x ′ ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t ) = 1 1 + 4 x 2 + 9 y 2 , cos β = y ′ ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t ) = 2 x 1 + 4 x 2 + 9 y 2 , cos γ = z ′ ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t ) = 3 y 1 + 4 x 2 + 9 y 2 , \cos\alpha=\cfrac{x'(t)}{\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}}=\cfrac{1}{\sqrt{1+4x^2+9y^2}},\\ \cos\beta=\cfrac{y'(t)}{\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}}=\cfrac{2x}{\sqrt{1+4x^2+9y^2}},\\ \cos\gamma=\cfrac{z'(t)}{\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}}=\cfrac{3y}{\sqrt{1+4x^2+9y^2}},\\ cosα=x′2(t)+y′2(t)+z′2(t)x′(t)=1+4x2+9y21,cosβ=x′2(t)+y′2(t)+z′2(t)y′(t)=1+4x2+9y22x,cosγ=x′2(t)+y′2(t)+z′2(t)z′(t)=1+4x2+9y23y,
从而
∫ Γ P d x + Q d y + R d z = ∫ Γ P + 2 x Q + 3 y R 1 + 4 x 2 + 9 y 2 d s . \displaystyle\int\limits_{\varGamma}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z=\displaystyle\int\limits_{\varGamma}\cfrac{P+2xQ+3yR}{\sqrt{1+4x^2+9y^2}}\mathrm{d}s. Γ∫Pdx+Qdy+Rdz=Γ∫1+4x2+9y2P+2xQ+3yRds.
(这道题主要利用曲线积分两种形式之间的转化求解)
本节主要介绍了格林公式的解法及其应用。
解 记 D D D为 C C C所围成的平面有界闭区域, C C C为 D D D的正向边界曲线,则由格林公式
∮ C ( x + y 3 3 ) d x + ( y + x − 2 3 x 3 ) d y = ∬ D [ ( 1 − 2 x 2 ) − y 2 ] d x d y . \displaystyle\oint\limits_{C}\left(x+\cfrac{y^3}{3}\right)\mathrm{d}x+\left(y+x-\cfrac{2}{3}x^3\right)\mathrm{d}y=\displaystyle\iint\limits_{D}[(1-2x^2)-y^2]\mathrm{d}x\mathrm{d}y. C∮(x+3y3)dx+(y+x−32x3)dy=D∬[(1−2x2)−y2]dxdy.
要使上式右端的二重积分达到最大值, D D D应包含所有使被积函数 1 − 2 x 2 − y 2 1-2x^2-y^2 1−2x2−y2大于零的点,而不包含使被积函数小于零的点。因此 D D D应为由椭圆 2 x 2 + y 2 = 1 2x^2+y^2=1 2x2+y2=1所围成的闭区域。这就是说,当 C C C为取逆时针方向的椭圆 2 x 2 + y 2 = 1 2x^2+y^2=1 2x2+y2=1时,所给的曲线积分达到最大值。
(这道题主要利用了格林公式的定义求解)
证 n n n边形的正向边界 L L L由有向线段 M 1 M 2 , M 2 M 3 , ⋯ , M n − 1 M n , M n M 1 , M_1M_2,M_2M_3,\cdots,M_{n-1}M_n,M_nM_1, M1M2,M2M3,⋯,Mn−1Mn,MnM1,组成。
有向线段 M 1 M 2 M_1M_2 M1M2的参数方程为 x = x 1 + ( x 2 − x 1 ) t x=x_1+(x_2-x_1)t x=x1+(x2−x1)t, y = y 1 + ( y 2 − y 1 ) t y=y_1+(y_2-y_1)t y=y1+(y2−y1)t, t t t从 0 0 0变到 1 1 1,于是
∫ M 1 M 2 x d y − y d x = ∫ 0 1 { [ x 1 + ( x 2 − x 1 ) t ] ( y 2 − y 1 ) − [ y 1 + ( y 2 − y 1 ) t ] ( x 2 − x 1 ) } d t = ∫ 0 1 [ x 1 ( y 2 − y 1 ) − y 1 ( x 2 − x 1 ) ] d t = ∫ 0 1 ( x 1 y 2 − x 2 y 1 ) d t = x 1 y 2 − x 2 y 1 . \begin{aligned} \displaystyle\int\limits_{M_1M_2}x\mathrm{d}y-y\mathrm{d}x&=\displaystyle\int^1_0\{[x_1+(x_2-x_1)t](y_2-y_1)-[y_1+(y_2-y_1)t](x_2-x_1)\}\mathrm{d}t\\ &=\displaystyle\int^1_0[x_1(y_2-y_1)-y_1(x_2-x_1)]\mathrm{d}t\\ &=\displaystyle\int^1_0(x_1y_2-x_2y_1)\mathrm{d}t=x_1y_2-x_2y_1. \end{aligned} M1M2∫xdy−ydx=∫01{[x1+(x2−x1)t](y2−y1)−[y1+(y2−y1)t](x2−x1)}dt=∫01[x1(y2−y1)−y1(x2−x1)]dt=∫01(x1y2−x2y1)dt=x1y2−x2y1.
同理可求得
∫ M 2 M 3 x d y − y d x = x 2 y 3 − x 3 y 2 , ⋯ , ∫ M n − 1 M n x d y − y d x = x n − 1 y n − x n y n − 1 , ∫ M n M 1 x d y − y d x = x n y 1 − x 1 y n . \begin{aligned} \displaystyle\int\limits_{M_2M_3}x\mathrm{d}y-y\mathrm{d}x&=x_2y_3-x_3y_2,\cdots,\\ \displaystyle\int\limits_{M_{n-1}M_n}x\mathrm{d}y-y\mathrm{d}x&=x_{n-1}y_n-x_ny_{n-1},\\ \displaystyle\int\limits_{M_nM_1}x\mathrm{d}y-y\mathrm{d}x&=x_ny_1-x_1y_n. \end{aligned} M2M3∫xdy−ydxMn−1Mn∫xdy−ydxMnM1∫xdy−ydx=x2y3−x3y2,⋯,=xn−1yn−xnyn−1,=xny1−x1yn.
因此 n n n边形的面积
A = 1 2 ∮ L x d y − y d x = 1 2 ( ∫ M 1 M 2 + ∫ M 2 M 3 + ⋯ + ∫ M n − 1 M n + ∫ M n M 1 ) x d y − y d x = 1 2 [ ( x 1 y 2 − x 2 y 1 ) + ( x 2 y 3 − x 3 y 2 ) + ⋯ + ( x n − 1 y n − x n y n − 1 ) + ( x n y 1 − x 1 y n ) ] . \begin{aligned} A&=\cfrac{1}{2}\displaystyle\oint\limits_{L}x\mathrm{d}y-y\mathrm{d}x=\cfrac{1}{2}\left(\quad\displaystyle\int\limits_{M_1M_2}+\displaystyle\int\limits_{M_2M_3}+\cdots+\displaystyle\int\limits_{M_{n-1}M_n}+\displaystyle\int\limits_{M_nM_1}\quad\right)x\mathrm{d}y-y\mathrm{d}x\\ &=\cfrac{1}{2}[(x_1y_2-x_2y_1)+(x_2y_3-x_3y_2)+\cdots+(x_{n-1}y_n-x_ny_{n-1})+(x_ny_1-x_1y_n)]. \end{aligned} A=21L∮xdy−ydx=21⎝⎛M1M2∫+M2M3∫+⋯+Mn−1Mn∫+MnM1∫⎠⎞xdy−ydx=21[(x1y2−x2y1)+(x2y3−x3y2)+⋯+(xn−1yn−xnyn−1)+(xny1−x1yn)].
(这道题主要利用了直线的参数方程求解)
解 在单连通区域 G G G内,若 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y)具有一阶连续偏导数,则向量 A ( x , y ) = 2 x y ( x 4 + y 2 ) λ i − x 2 ( x 4 + y 2 ) λ j \bm{A}(x,y)=2xy(x^4+y^2)^\lambda\bm{i}-x^2(x^4+y^2)^\lambda\bm{j} A(x,y)=2xy(x4+y2)λi−x2(x4+y2)λj为某二元函数 u ( x , y ) u(x,y) u(x,y)的梯度(此条件相当于 P ( x , y ) d x + Q ( x , y ) d y P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y P(x,y)dx+Q(x,y)dy是 u ( x , y ) u(x,y) u(x,y)的全微分)的充分必要条件是 ∂ P ∂ y = ∂ Q ∂ x \cfrac{\partial P}{\partial y}=\cfrac{\partial Q}{\partial x} ∂y∂P=∂x∂Q在 G G G内恒成立。
本题中 P ( x , y ) = 2 x y ( x 4 + y 2 ) λ P(x,y)=2xy(x^4+y^2)^\lambda P(x,y)=2xy(x4+y2)λ, Q ( x , y ) = x 2 ( x 4 + y 2 ) λ Q(x,y)=x^2(x^4+y^2)^\lambda Q(x,y)=x2(x4+y2)λ。
∂ P ∂ y = 2 x ( x 4 + y 2 ) λ + 2 λ x y ( x 4 + y 2 ) λ − 1 ⋅ 2 y , ∂ Q ∂ x = − 2 x ( x 4 + y 2 ) λ − x 2 λ ( x 4 + y 2 ) λ − 1 ⋅ 4 x 3 . \cfrac{\partial P}{\partial y}=2x(x^4+y^2)^\lambda+2\lambda xy(x^4+y^2)^{\lambda-1}\cdot2y,\\ \cfrac{\partial Q}{\partial x}=-2x(x^4+y^2)^\lambda-x^2\lambda(x^4+y^2)^{\lambda-1}\cdot4x^3. ∂y∂P=2x(x4+y2)λ+2λxy(x4+y2)λ−1⋅2y,∂x∂Q=−2x(x4+y2)λ−x2λ(x4+y2)λ−1⋅4x3.
由等式 ∂ Q ∂ x = ∂ P ∂ y \cfrac{\partial Q}{\partial x}=\cfrac{\partial P}{\partial y} ∂x∂Q=∂y∂P得到
4 x ( x 4 + y 2 ) λ ( 1 + λ ) = 0 , 4x(x^4+y^2)^\lambda(1+\lambda)=0, 4x(x4+y2)λ(1+λ)=0,
由于 4 x ( x 4 + y 2 ) λ > 0 4x(x^4+y^2)^\lambda>0 4x(x4+y2)λ>0,故 λ = − 1 \lambda=-1 λ=−1,即 A = 2 x y i − x 2 j x 4 + y 2 \bm{A}=\cfrac{2xy\bm{i}-x^2\bm{j}}{x^4+y^2} A=x4+y22xyi−x2j。
在半平面 x > 0 x>0 x>0内,取 ( x 0 , y 0 ) = ( 1 , 0 ) (x_0,y_0)=(1,0) (x0,y0)=(1,0),则得
u ( x , y ) = 1 x 2 x ⋅ 0 x 4 + 0 2 d x − 0 y x 2 x 4 + y 2 d y = − arctan y x 2 . \begin{aligned} u(x,y)&=\displaystyle^x_1\cfrac{2x\cdot0}{x^4+0^2}\mathrm{d}x-\displaystyle^y_0\cfrac{x^2}{x^4+y^2}\mathrm{d}y\\ &=-\arctan\cfrac{y}{x^2}. \end{aligned} u(x,y)=1xx4+022x⋅0dx−0yx4+y2x2dy=−arctanx2y.
(这道题主要利用了梯度的定义求解)
本节主要介绍了对面积的曲面积分的计算方法。
解
∬ Σ ( x 2 + y 2 ) d S = ∬ D x y ( x 2 + y 2 ) 1 + 4 x 2 + 4 y 2 d x d y = 极坐标 ∬ D x y ρ 2 1 + 4 ρ 2 ρ d ρ d θ = ∫ 0 2 π d θ ∫ 0 2 ρ 3 1 + 4 ρ 2 d ρ = ρ = 1 2 tan t 2 π ⋅ 1 16 ∫ 0 arctan 2 2 sec 3 t ⋅ tan 3 t d t = π 8 ∫ 0 arctan 2 2 sec 2 t ( sec 2 t − 1 ) d ( sec t ) = π 8 ⋅ 596 3 = 149 30 π . \begin{aligned} \displaystyle\iint\limits_{\Sigma}(x^2+y^2)\mathrm{d}S&=\displaystyle\iint\limits_{D_{xy}}(x^2+y^2)\sqrt{1+4x^2+4y^2}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{极坐标}}\displaystyle\iint\limits_{D_{xy}}\rho^2\sqrt{1+4\rho^2}\rho\mathrm{d}\rho\mathrm{d}\theta\\ &=\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^{\sqrt{2}}_0\rho^3\sqrt{1+4\rho^2}\mathrm{d}\rho\\ &\xlongequal{\rho=\cfrac{1}{2}\tan t}2\pi\cdot\cfrac{1}{16}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^3t\cdot\tan^3t\mathrm{d}t\\ &=\cfrac{\pi}{8}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^2t(\sec^2t-1)\mathrm{d}(\sec t)=\cfrac{\pi}{8}\cdot\cfrac{596}{3}=\cfrac{149}{30}\pi. \end{aligned} Σ∬(x2+y2)dS=Dxy∬(x2+y2)1+4x2+4y2dxdy极坐标Dxy∬ρ21+4ρ2ρdρdθ=∫02πdθ∫02ρ31+4ρ2dρρ=21tant2π⋅161∫0arctan22sec3t⋅tan3tdt=8π∫0arctan22sec2t(sec2t−1)d(sect)=8π⋅3596=30149π.
(这道题主要利用了换元法求解)
解
∬ Σ 3 z d S = 3 ∬ D x y [ 2 − ( x 2 + y 2 ) ] 1 + 4 x 2 + 4 y 2 d x d y = 极坐标 3 ∬ D x y ( 2 − ρ 2 ) 1 + 4 ρ 2 ρ d ρ d θ = 3 ∫ 0 2 π d θ ∫ 0 2 ( 2 − ρ 2 ) 1 + 4 ρ 2 ρ d ρ = ρ = 1 2 tan t 6 π ( 1 2 ∫ 0 arctan 2 2 sec 3 t ⋅ tan t d t − 1 16 ∫ 0 arctan 2 2 sec 3 t ⋅ tan 3 t d t ) = 6 π [ 1 2 ∫ 0 arctan 2 2 sec 2 t d ( sec t ) − 1 16 ∫ 0 arctan 2 2 sec 2 t ( sec 2 t − 1 ) d ( sec t ) ] = 6 π ( 13 3 − 149 60 ) = 111 10 π . \begin{aligned} \displaystyle\iint\limits_{\Sigma}3z\mathrm{d}S&=3\displaystyle\iint\limits_{D_{xy}}[2-(x^2+y^2)]\sqrt{1+4x^2+4y^2}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{极坐标}}3\displaystyle\iint\limits_{D_{xy}}(2-\rho^2)\sqrt{1+4\rho^2}\rho\mathrm{d}\rho\mathrm{d}\theta\\ &=3\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^{\sqrt{2}}_0(2-\rho^2)\sqrt{1+4\rho^2}\rho\mathrm{d}\rho\\ &\xlongequal{\rho=\cfrac{1}{2}\tan t}6\pi\left(\cfrac{1}{2}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^3t\cdot\tan t\mathrm{d}t-\cfrac{1}{16}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^3t\cdot\tan^3t\mathrm{d}t\right)\\ &=6\pi\left[\cfrac{1}{2}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^2t\mathrm{d}(\sec t)-\cfrac{1}{16}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^2t(\sec^2t-1)\mathrm{d}(\sec t)\right]\\ &=6\pi\left(\cfrac{13}{3}-\cfrac{149}{60}\right)=\cfrac{111}{10}\pi. \end{aligned} Σ∬3zdS=3Dxy∬[2−(x2+y2)]1+4x2+4y2dxdy极坐标3Dxy∬(2−ρ2)1+4ρ2ρdρdθ=3∫02πdθ∫02(2−ρ2)1+4ρ2ρdρρ=21tant6π(21∫0arctan22sec3t⋅tantdt−161∫0arctan22sec3t⋅tan3tdt)=6π[21∫0arctan22sec2td(sect)−161∫0arctan22sec2t(sec2t−1)d(sect)]=6π(313−60149)=10111π.
(这道题主要利用了换元法求解)
解 Σ \Sigma Σ在 x O y xOy xOy面上的投影区域 D x y D_{xy} Dxy为圆域 x 2 + y 2 ⩽ 2 a x x^2+y^2\leqslant2ax x2+y2⩽2ax。由于 Σ \Sigma Σ关于 z O x zOx zOx面对称,而函数 x y xy xy和 y z yz yz关于 y y y均为奇函数,故
∬ Σ x y d S = . 0 , ∬ Σ y z d S = 0. \displaystyle\iint\limits_{\Sigma}xy\mathrm{d}S=.0,\quad\displaystyle\iint\limits_{\Sigma}yz\mathrm{d}S=0. Σ∬xydS=.0,Σ∬yzdS=0.
于是
∬ Σ ( x y + y z + z x ) d S = ∬ Σ z x d S = ∬ D x y x x 2 + y 2 1 + x 2 + y 2 x 2 + y 2 d x d y = 2 ∬ D x y x x 2 + y 2 d x d y = 极坐标 2 ∫ − π 2 π 2 d θ ∫ 0 2 a cos θ ρ cos θ ⋅ ρ ⋅ ρ d ρ = 8 2 a 4 ∫ 0 π 2 cos 5 θ d θ = 8 2 a 4 ⋅ 4 5 ⋅ 2 3 = 64 15 2 a 4 . \begin{aligned} \displaystyle\iint\limits_{\Sigma}(xy+yz+zx)\mathrm{d}S&=\displaystyle\iint\limits_{\Sigma}zx\mathrm{d}S\\ &=\displaystyle\iint\limits_{D_{xy}}x\sqrt{x^2+y^2}\sqrt{1+\cfrac{x^2+y^2}{x^2+y^2}}\mathrm{d}x\mathrm{d}y\\ &=\sqrt{2}\displaystyle\iint\limits_{D_{xy}}x\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{极坐标}}\sqrt{2}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\mathrm{d}\theta\displaystyle\int^{2a\cos\theta}_0\rho\cos\theta\cdot\rho\cdot\rho\mathrm{d}\rho\\ &=8\sqrt{2}a^4\displaystyle\int^{\frac{\pi}{2}}_0\cos^5\theta\mathrm{d}\theta\\ &=8\sqrt{2}a^4\cdot\cfrac{4}{5}\cdot\cfrac{2}{3}=\cfrac{64}{15}\sqrt{2}a^4. \end{aligned} Σ∬(xy+yz+zx)dS=Σ∬zxdS=Dxy∬xx2+y21+x2+y2x2+y2dxdy=2Dxy∬xx2+y2dxdy极坐标2∫−2π2πdθ∫02acosθρcosθ⋅ρ⋅ρdρ=82a4∫02πcos5θdθ=82a4⋅54⋅32=15642a4.
(这道题主要利用了被积函数和积分区域的对称性求解)
本节主要介绍了对坐标的曲面积分的解法。
解 在 Σ \Sigma Σ上, z = 1 − x + y z=1-x+y z=1−x+y。由于 Σ \Sigma Σ取上侧,故 Σ \Sigma Σ在任一点处的单位法向量为
n = 1 1 + z x 2 + z y 2 ( − z x , − z y , 1 ) = 1 3 ( 1 , − 1 , 1 ) . \bm{n}=\cfrac{1}{\sqrt{1+z^2_x+z^2_y}}(-z_x,-z_y,1)=\cfrac{1}{\sqrt{3}}(1,-1,1). n=1+zx2+zy21(−zx,−zy,1)=31(1,−1,1).
由两类曲面积分之间的联系,可得
原式 = ∬ Σ [ ( f + x ) cos α + ( 2 f + y ) cos β + ( f + z ) cos γ ] d S = 1 3 ∬ Σ [ ( f + x ) − ( 2 f + y ) + ( f + z ) cos γ ] d S = 1 3 ∬ Σ ( x − y + z ) d S = 1 3 ∬ Σ d S = 1 3 ⋅ ( Σ 的面积 ) = 1 3 ⋅ 3 2 = 1 2 . \begin{aligned} \text{原式}&=\displaystyle\iint\limits_{\Sigma}[(f+x)\cos\alpha+(2f+y)\cos\beta+(f+z)\cos\gamma]\mathrm{d}S\\ &=\cfrac{1}{\sqrt{3}}\displaystyle\iint\limits_{\Sigma}[(f+x)-(2f+y)+(f+z)\cos\gamma]\mathrm{d}S\\ &=\cfrac{1}{\sqrt{3}}\displaystyle\iint\limits_{\Sigma}(x-y+z)\mathrm{d}S=\cfrac{1}{\sqrt{3}}\displaystyle\iint\limits_{\Sigma}\mathrm{d}S\\ &=\cfrac{1}{\sqrt{3}}\cdot(\Sigma\text{的面积})=\cfrac{1}{\sqrt{3}}\cdot\cfrac{\sqrt{3}}{2}=\cfrac{1}{2}. \end{aligned} 原式=Σ∬[(f+x)cosα+(2f+y)cosβ+(f+z)cosγ]dS=31Σ∬[(f+x)−(2f+y)+(f+z)cosγ]dS=31Σ∬(x−y+z)dS=31Σ∬dS=31⋅(Σ的面积)=31⋅23=21.
(这道题主要利用了曲面积分的定义式积分求解)
本节主要介绍了高斯公式的应用以及通量与散度的计算。
格林第二公式
。解 由格林第一公式知:
∭ Ω u Δ v d x d y d z = ∯ Σ u ∂ v ∂ n d S − ∯ Ω ( ∂ u ∂ x ∂ v ∂ x + ∂ u ∂ y ∂ v ∂ y + ∂ u ∂ z ∂ v ∂ z ) . \displaystyle\iiint\limits_{\varOmega}u\varDelta v\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}u\cfrac{\partial v}{\partial n}\mathrm{d}S-\displaystyle\oiint\limits_{\varOmega}\left(\cfrac{\partial u}{\partial x}\cfrac{\partial v}{\partial x}+\cfrac{\partial u}{\partial y}\cfrac{\partial v}{\partial y}+\cfrac{\partial u}{\partial z}\cfrac{\partial v}{\partial z}\right). Ω∭uΔvdxdydz=Σ∬u∂n∂vdS−Ω∬(∂x∂u∂x∂v+∂y∂u∂y∂v+∂z∂u∂z∂v).
在此公式中将函数 u u u和 v v v交换位置,得
∭ Ω v Δ u d x d y d z = ∯ Σ v ∂ u ∂ n d S − ∯ Ω ( ∂ u ∂ x ∂ v ∂ x + ∂ u ∂ y ∂ v ∂ y + ∂ u ∂ z ∂ v ∂ z ) . \displaystyle\iiint\limits_{\varOmega}v\varDelta u\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}v\cfrac{\partial u}{\partial n}\mathrm{d}S-\displaystyle\oiint\limits_{\varOmega}\left(\cfrac{\partial u}{\partial x}\cfrac{\partial v}{\partial x}+\cfrac{\partial u}{\partial y}\cfrac{\partial v}{\partial y}+\cfrac{\partial u}{\partial z}\cfrac{\partial v}{\partial z}\right). Ω∭vΔudxdydz=Σ∬v∂n∂udS−Ω∬(∂x∂u∂x∂v+∂y∂u∂y∂v+∂z∂u∂z∂v).
将上面两个式子相减即得
∭ Ω ( u Δ v − v Δ u ) d x d y d z = ∯ Σ ( u ∂ v ∂ n − v ∂ u ∂ n ) d S . \displaystyle\iiint\limits_{\varOmega}(u\varDelta v-v\varDelta u)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}\left(u\cfrac{\partial v}{\partial n}-v\cfrac{\partial u}{\partial n}\right)\mathrm{d}S. Ω∭(uΔv−vΔu)dxdydz=Σ∬(u∂n∂v−v∂n∂u)dS.
(这道题主要利用了格林第一公式的证明求解)
本节主要介绍了斯托克斯公式的应用以及环流量与旋度的计算。
解 取 Σ \Sigma Σ为平面 x a + z b = 1 \cfrac{x}{a}+\cfrac{z}{b}=1 ax+bz=1的上侧被 Γ \Gamma Γ所围成的部分, Σ \Sigma Σ的单位法向量 n = ( cos α , cos β , cos γ ) = ( b a 2 + b 2 , 0 , a a 2 + b 2 ) \bm{n}=(\cos\alpha,\cos\beta,\cos\gamma)=\left(\cfrac{b}{\sqrt{a^2+b^2}},0,\cfrac{a}{\sqrt{a^2+b^2}}\right) n=(cosα,cosβ,cosγ)=(a2+b2b,0,a2+b2a)。由斯托克斯公式
∮ Γ ( y − z ) d x + ( z − x ) d y + ( x − y ) d z = ∬ Σ ∣ b a 2 + b 2 0 a a 2 + b 2 ∂ ∂ x ∂ ∂ y ∂ ∂ z y − z z − x x − y ∣ d S = − 2 ( a + b ) a 2 + b 2 ∬ Σ d S . \begin{aligned} &\displaystyle\oint\limits_{\Gamma}(y-z)\mathrm{d}x+(z-x)\mathrm{d}y+(x-y)\mathrm{d}z\\ =&\displaystyle\iint\limits_{\Sigma}\begin{vmatrix}\cfrac{b}{\sqrt{a^2+b^2}}&0&\cfrac{a}{\sqrt{a^2+b^2}}\\\cfrac{\partial}{\partial x}&\cfrac{\partial}{\partial y}&\cfrac{\partial}{\partial z}\\y-z&z-x&x-y\end{vmatrix}\mathrm{d}S\\ =&\cfrac{-2(a+b)}{\sqrt{a^2+b^2}}\displaystyle\iint\limits_{\Sigma}\mathrm{d}S. \end{aligned} ==Γ∮(y−z)dx+(z−x)dy+(x−y)dzΣ∬∣∣∣∣∣∣∣∣∣∣a2+b2b∂x∂y−z0∂y∂z−xa2+b2a∂z∂x−y∣∣∣∣∣∣∣∣∣∣dSa2+b2−2(a+b)Σ∬dS.
由于 ∬ Σ d S = Σ \displaystyle\iint\limits_{\Sigma}\mathrm{d}S=\Sigma Σ∬dS=Σ的面积 A A A,而 A ⋅ cos γ = A ⋅ a a 2 + b 2 = Σ A\cdot\cos\gamma=A\cdot\cfrac{a}{\sqrt{a^2+b^2}}=\Sigma A⋅cosγ=A⋅a2+b2a=Σ在 x O y xOy xOy面上的投影区域的面积 = π a 2 =\pi a^2 =πa2,故
∬ Σ d S = π a 2 a a 2 + b 2 = π a a 2 + b 2 . \displaystyle\iint\limits_{\Sigma}\mathrm{d}S=\cfrac{\pi a^2}{\cfrac{a}{\sqrt{a^2+b^2}}}=\pi a\sqrt{a^2+b^2}. Σ∬dS=a2+b2aπa2=πaa2+b2.
(这道题主要利用了斯托克斯公式求解)
解 添加有向线段 O A : y = 0 OA:y=0 OA:y=0, x x x从 0 0 0变到 2 a 2a 2a,则在半圆闭区域 D D D上应用格林公式可得
∫ L + O A ( e x sin y − 2 y ) d x + ( e x cos y − 2 ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∬ D ( e x cos y − e x cos y + 2 ) d x d y = 2 ∬ D d x d y = π a 2 . \begin{aligned} &\displaystyle\int\limits_{L+OA}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y\\ =&\displaystyle\iint\limits_{D}\left(\cfrac{\partial Q}{\partial x}-\cfrac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y\\ =&\displaystyle\iint\limits_{D}(e^x\cos y-e^x\cos y+2)\mathrm{d}x\mathrm{d}y\\ =&2\displaystyle\iint\limits_{D}\mathrm{d}x\mathrm{d}y=\pi a^2. \end{aligned} ===L+OA∫(exsiny−2y)dx+(excosy−2)dyD∬(∂x∂Q−∂y∂P)dxdyD∬(excosy−excosy+2)dxdy2D∬dxdy=πa2.
于是
∫ L ( e x sin y − 2 y ) d x + ( e x cos y − 2 ) d y = π a 2 − ∫ O A ( e x sin y − 2 y ) d x + ( e x cos y − 2 ) d y = π a 2 − ∫ 0 2 a ( e x sin 0 − 2 ⋅ 0 ) d x = π a 2 . \begin{aligned} &\displaystyle\int\limits_{L}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y\\ =&\pi a^2-\displaystyle\int\limits_{OA}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y\\ =&\pi a^2-\displaystyle\int^{2a}_0(e^x\sin0-2\cdot0)\mathrm{d}x=\pi a^2. \end{aligned} ==L∫(exsiny−2y)dx+(excosy−2)dyπa2−OA∫(exsiny−2y)dx+(excosy−2)dyπa2−∫02a(exsin0−2⋅0)dx=πa2.
(这道题主要利用了添加线段的方法求解)
解 由 Γ \Gamma Γ的一般方程 { y = z , x 2 + y 2 + z 2 = 1 \begin{cases}y=z,\\x^2+y^2+z^2=1\end{cases} {y=z,x2+y2+z2=1可得 x 2 + 2 y 2 = 1 x^2+2y^2=1 x2+2y2=1。从而可令 x = cos t , y = sin t 2 , z = sin t 2 x=\cos t,y=\cfrac{\sin t}{\sqrt{2}},z=\cfrac{\sin t}{\sqrt{2}} x=cost,y