Bloom Filter是1970年由Bloom提出的,最初广泛用于拼写检查和数据库系统中。近年来,随着计算机和互联网技术的发展,数据集的不断扩张使得 Bloom filter获得了新生,各种新的应用和变种不断涌现。Bloom filter是一个空间效率很高的数据结构,它由一个位数组和一组hash映射函数组成。Bloom filter可以用于检索一个元素是否在一个集合中,它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Bloom filter使用一个位数组来记录元素存在状态,并使用一组hash函数(h1, h2, hk...)来对元素进行位映射。插入元素时,对该元素分别进行K次hash计算,并将映射到位数组的相应bit置1。查找元素时,任何其中一个映射位为 0则表示该元素不存在于集合当中,只要当所有映射位均为1时才表示该元素有可能存在于集合当中。换句话说,如果Bloom filter判断一个元素不在集合中,那肯定就不存在;而如果判断存在,则不一定存在,虽然这个概率很低。这个问题是由hash函数会发生碰撞的特性所决定的,它造成了Bloom filter的错误率产生。这个错误率可通过改变Bloom filter数组大小,或改变hash函数个数进行调节控制。由此可见,Bloom filter也不是完美的,它的高效也是有一定代价的,它通过容忍一定的错误率发生换取了存储空间的极大节省。另外,Bloom filter不能支持元素的删除操作,如果删除会影响其他元素的存在性正确判断。因此,Bloom Filter不适合那些“零错误”的应用场合,但是这个错误是正向的(false positive),不会发生反向的错误(false negative),判断元素不存在集合中是绝对正确的。Bloom filter使用可控的错误率获得了空间的极大节省和极快的查找性能,得到广泛应用也是理所当然的。
根据上面推导所得到的数学公式,假设错误率我们取0.01,则可以确定最优化情况下,m >= 9.567n,k = 7。
与其它数据结构相比较,Bloom filter的最大优点是空间效率和查找时间复杂性,它的存储空间和插入/查询时间都是常数。Hash函数之间没有相关性,可以方便地由硬件并行实现。Bloom filter不需要存储元素本身,在某些对保密要求非常严格的场合有优势。另外,Bloom filter一般都可以表示大数据集的全集,而其它任何数据结构都难以做到。
Bloom filter的缺点和优点一样显著,首先就是错误率。随着插入的元素数量增加,错误率也随之增加。虽然可以通过增加位数组大小或hash函数个数来降低错误率,但同时也时影响空间效率和查找性能,而且这个错误率是无法从根本上消除的。这使得要求“零错误”的场合无法应用Bloom filter。其次,一般情况下不能从Bloom filter中删除元素。一方面是我们不能保证删除的元素一定存在Bloom filter中,另一方面是不能保证安全地删除元素,可能会对其他元素产生影响,究其原因还是hash函数可能产生的碰撞造成的。计数Bloom filter可以在一定程度上支持元素删除,但保证安全地删除元素并非如此简单,它也不能从根本上解决这个问题,而且计数器回绕也会有问题。这两方面也是目前Bloom filter的重点研究方向,有不少工作,使得出现了很多Bloom filter的变种。
Bloom filter被广泛应用于各种领域,比如拼写检查、字符串匹配算法、网络包分析工具、Web Cache、文件系统、存储系统等,这里着重介绍一下Bloom filter在重复数据删除中的应用。主流的重复数据删除技术的基本原理是对文件进行定长或变长分块,然后利用hash函数计算数据块指纹,如果两个数据块指纹相同则认为是重复数据块(同样这里存在数据碰撞问题),只保存一个数据块副本即可,其他相同数据块使用该副本索引号表示,从而实现数据缩减存储空间并提高存储效率。为了查询一个数据块是否重复或者已经存在,需要计算数据块指纹并进行查找,并记录所有唯一数据块的指纹。举一个例子:32TB的数据,平均数据块大小为8KB,每个数据块使用MD5和SHA1计算两个指纹并用64位整数表示唯一块号则共占用44字节((128+160+64)/8),则总共最多需要176GB(32TB/8KB * 44 Byte)的存储空间来保存数据块信息。现在的去重系统数据容量通常多达数十到数百TB,如果把数据块信息全部保存在内存中,显然对内存的需求量非常巨大,出于成本考虑这对商业产品是不现实的。因此,为了在成本和性能两方面作折中,通常的做法是把数据块信息保存在磁盘或SSD上,使用一定内存量作 Cache缓存数据块指纹,利用时间局部性和空间局部性来提高查找性能。这种方法的一个关键问题是,如果新的数据块是不重复的,查找时会出现Cache不命中,从而引起大量的磁盘读写操作。由于磁盘或SSD性能要远远小于内存的,对查找性能影响非常大。Bloom filter可以有效解决这个问题,DataDomain中的Summary Vector就是采用Bloom filter来实现的。对于前面的例子,一个数据块用3个hash函数计算指纹最多占用3个位,则Bloom filter仅需要1.5GB = 32TB/8KB * 3 /8 bytes的内存空间,这即使对于普通的PC机都不是问题。引入Bloom filter机制后,对于一个新数据块,首先查找Bloom filter,如果未命中则说明这是一个新的唯一数据块,直接保存数据块和并Cachr数据块信息即可;如果命中,则说明这有可能是一个重复数据块,需要通过进一步的hash或tree查找进行确认,此时需要Cache与Disk进行交互。受益于Bloom filter以及Cache,DataDomain系统可以减少99%的磁盘访问,从而利用少量的内存空间大幅提高了数据块查重性能。
Bloom filter原理简单但却总能派上大用场,实现起来也非常容易。这里没有重新发明轮子,而是引用了文献[5]的C语言实现,总共不过百来行代码,而且还有测试例程。完整C程序请访问 http://en.literateprograms.org/Bloom_filter_%28C%29?oldid=16893
/* bloom.h */ #ifndef __BLOOM_H__ #define __BLOOM_H__ #include[1] http://en.wikipedia.org/wiki/Bloom_filter
[2] http://www.cs.jhu.edu/~fabian/courses/CS600.624/slides/bloomslides.pdf
[3] http://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
[4] http://www.partow.net/programming/hashfunctions/#BloomFilters
[5] http://en.literateprograms.org/Bloom_filter_%28C%29?oldid=16893
[6] http://www.datadomain.com/pdf/DataDomain-Avoiding-the-Bottleneck-with-Dedupe.pdf