有感于STL的内存管理 [存档]

有感于STL的内存管理
转自 http://blog.163.com/dengminwen@126/blog/static/870226720097189486788/
web技术 2009-08-18 09:48 阅读244 评论4
字号: 大 中 小
警告:本文是技术类文章,只适合码工们围观,非码工请跳过此坑


1. 背景

前些天在一个技术分享会上,某大牛说,STL使用了内存池,释放内存的时候,并不释放给OS,而是自己由留着用。

听到这些观点后,我就有些着急了,因为我以前一直是直接使用STL的一些工具类的,比如std::string、std::map、std::vector、std::list等等,从来都没有关注过内存的问题。

带着内存的问题,我花了两三天的时间去阅读STL的代码,并且写一些简单的程序进行测试;下面列举一些心得体会,但是却没有什么大的结论 -.-


2. 容易误解的简单例子

我们以STL中的map为例,下面有一个使用map的简单例子,大部分人可以在30秒内写好。


void testmap()
{
map testmap;
for (int i = 0; i < 1000000; i++) {
testmap[i] = (float)i;
}
testmap.clear();
}


为了在调用map::clear()之后查看进程的内存使用量,我们可以加几行代码让程序暂停一下。


void testmap()
{
map testmap;
for (int i = 0; i < 1000000; i++) {
testmap[i] = (float)i;
}
testmap.clear();
// 观察点
int tmp; cout << "use ps to see my momory now, and enter int to continue:"; cin >> tmp;
}


编译运行上面的程序,你会看见这样的情况:ps显示进程的内存使用量为40MB多。这时,你会毫不犹豫地说,STL的map使用了内存池(memory pool)。

然后,我就跑去阅读libstdc++的STL的源代码,STL提供了很多种Allocator的实现,有基于内存池的,但是默认的std::allocator的实现是new_allocator,这个实现只是简单的对new和delete进行了简单的封装,并没有使用内存池。这样,怀疑的对象就转移到glibc的malloc函数了。malloc提供的两个函数来查看当前申请的内存的状态,分别是malloc_stats()和mallinfo(),它们都定义在里。

为了弄清楚这个问题,我们对上面的例子进行如下的改造:


#include
void testmap()
{
malloc_stats(); // <======== 观察点1
map testmap;
for (int i = 0; i < 1000000; i++) {
testmap[i] = (float)i;
}
malloc_stats(); // <======== 观察点2
testmap.clear();
malloc_stats(); // <======== 观察点3
}

这个例子的运行环境是这样的:

[dengmw@my ~]$ g++ -v
Reading specs from /usr/lib/gcc/x86_64-redhat-linux/3.4.6/specs
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --enable-shared --enable-threads=posix --disable-checking --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-java-awt=gtk --host=x86_64-redhat-linux
Thread model: posix
gcc version 3.4.6 20060404 (Red Hat 3.4.6-9)

程序的运行结果是这样的:

在观察点1:
* system bytes = 0
* in use bytes = 0
在观察点2:
* system bytes = 48144384
* in use bytes = 48005120
在观察点3:
* system bytes = 48140288 <==== malloc cache the memory here
* in use bytes = 5120


很明显,尽管程序员显式地调用了map::clear(),但是malloc并没有把这些内存归还给OS,而是缓存起来了。所以说,这个例子的罪魁祸首并不是libstdc++的的STL,而是glibc的malloc。


3. 侯捷的《STL源码剖析》有点过时了
在调试上面的例子的时候,我在看了不少的书籍和网上的文章,其中就包括了侯捷的《STL源码剖析》,但是这本书已经过时了,因为他写这本书的时候,g++的版本才2.9。我把g++的各个版本的源代码都下载下来了,并且进行了比较,总结如下:
侯捷的《STL源码剖析》只对于gcc-3.3.*及以前的版本是对的;对于gcc-3.4.*以后的版本,STL中关于内存的代码变了
当前,大家使用的gcc大都是3.4.6版本或者更加新的版本
gcc-3.3分支从2003-05-13发布第1版,到2005-05-03发布3.3.6
gcc-3.3的默认的Allocator,定义在"include/bits/stl_alloc.h"里,确实是带有cache的 (即常说的memory pool)
gcc-3.4的默认的Allocator,定义在"include/bits/allocator.h"里,它的真实的实现是"include/ext/new_allocator.h",这个实现不带cache,只是new和delete的简单封装


4. STL内存管理的基础知识(gcc-3.4.*及以后的)

通过这次对STL的研究,我学到不不少新的知识。可能这些内容你都已经会了,-.-,我比较弱,下面的内容我是第一次知道的:

STL有很多种allocator,默认采用的是std::allocator,我们沿着这样的头文件路线,可以找到它的最终实现:
-> "include/bits/allocator.h"
-> "include/i386-redhat-linux/bits/c++allocator.h"
-> "include/ext/new_allocator.h"(即是说,std::allocator == __gnu_cxx::new_allocator)

根据C++的标准,STL的allocator,把对象的申请和释放分成了4步:
第1步:申请内存空间,对应函数是allocator::allocate()
第2步:执行构造函数,对应函数是allocator::construct()
第3步:执行析构函数,对应函数是allocator::destroy()
第4步:释放内存空间,对应函数是allocator::deallocate()
STL崇尚拷贝,你往容器里放东西或者从容器里取东西,都是要调用拷贝构造函数的。比如,你有一个对象a要插入到map里,过程是这样的:
map先申请一个结点的空间
调用拷贝构造函数初始化该结点
把新结点插入到map的红黑树中

STL中实现了好多种不同的更为具体的allocator,如下(GNU GCC关于Memory的官方文档):
__gnu_cxx::new_allocator: 简单地封装了new和delete操作符,通常就是std::allocator
__gnu_cxx::malloc_allocator: 简单地封装了malloc和free函数
__gnu_cxx::array_allocator: 申请一堆内存
__gnu_cxx::debug_allocator: 用于debug
__gnu_cxx::throw_allocator: 用于异常
__gnu_cxx::__pool_alloc: 基于内存池
__gnu_cxx::__mt_alloc: 对多线程环境进行了优化
__gnu_cxx::bitmap_allocator: keep track of the used and unused memory locations.
上面的8个allocator的实现中,bitmap_allocator、pool_allocator和__mt_alloc是基于cache的,其它的不基于cache
* 那么?如何指定使用一个特殊的allocator呢?示例如下:

map a1; // 方法1
map, std::allocator > > a3; // 方法2
// 方法3,方法1、方法2、方法3都是等价的
map, __gnu_cxx::new_allocator > > a2;
// 方法4,使用了基于cache的allocator
map, __gnu_cxx::__pool_alloc > > a4;


5. 内存碎片是容易被忽视的导致OutOfMemory的原因

这个观点有点类似于磁盘碎片,也可以称为内存碎片吧,当内存碎片过多的时候,极容易出现OutOfMemory错误;

使用STL的map特别容易出现这种情况,往map里插入了海量的小对象,然后释放了一些,然后再想申请内存时,就出现OutOfMemory错误了;

这种现象不只是在使用STL的情况会发现,下面举一个例子来说明内存碎片的问题,尽管这个例子没有使用STL。

举例之前,先说明一下这个例子中使用的两个查看当前进程的内存统计量的2个函数:
int get_max_malloc_length_inMB() : 得到当前可以申请的最长的内存长度(MB);这个函数不停地调用p=malloc(length*1024*1024);如果成功,则length++,并且free(p);如果失败,返回(length-1)。
int get_free_mem_inKB() : 得到当前可以申请的内存总量(KB);这个函数不停地调用malloc(1024)来申请1KB的内存;如果成功,把这1KB的内存存起来,并且count++;如果失败,则把所有的1KB内存释放,再返回count。
为了测试方便,我在运行程序前,设置了进程的最大内存为200MB,使用的命令如下:

ulimit -m 204800;
ulimit -v 204800;

这个例子把申请到的内存以矩阵的形式存储起来,先按列优先把指针存起来,再按行优先进行free,这样会造成大量的内存碎片;例子的伪代码如下:

char ** Ptrs = (char**) malloc( ROW * sizeof(char*) );
...

// 第1步: 占领所有的内存,按列优先进行申请
for(j=0; j for(i=0; i Ptrs[j][i] = malloc(1024);
}
}

// 第2步:按行优先释放所有的内存,在中间多次调用get_max_malloc_length_inMB和get_free_mem_inKB来查看内存使用情况
for (i=0; i for (j=0; j free( Ptrs[i][j] );
}
free(Ptrs[i]);
// 得到两个关于内存的统计量
get_max_malloc_length_inMB();
get_free_mem_inKB();
}

// 第3步:释放Ptrs,再获取一次内存的统计量
free(Ptrs);
get_max_malloc_length_inMB();
get_free_mem_inKB();

需要关注的是,内存的申请的顺序是按列优先的,而释放的顺序是按行优先的,这种做法就是模拟内存的碎片。

运行上面的程序后,得到的结果是:在释放内存的过程中,max_malloc_length_inMB长期保持在0 MB,当全部释放完后,max_malloc_length_inMB变成了 193 MB


max_malloc_length_inMB:
196 MB -> 0 MB -> 0 MB -> ... -> 0 MB -> 0 MB -> ...
-> 0 MB -> 0 MB -> 195 MB
free_mem_inKB:
199374 KB -> 528 KB -> 826 KB -> ... -> 96037 KB -> 96424 KB -> ...
-> 197828 KB -> 198215 KB -> 198730 KB

上面的结果引申出这样的结论:
OutOfMemory错误,并不一定是内存使用得太多;
当一个程序申请了大量的小内存块 (比如往std::map中插入海量的小对象),导致内存碎片过多的话,一样有可能出现OutOfMemory错误


6. 一些别的收获
6.1 libc.so.6和glibc-2.9有什么不同?
参考文献:http://en.wikipedia.org/wiki/GNU_C_Library
在80年代,FSF写了glibc;
后来,linux kernel的人照着glibc,写了"Linux libc",一直从libc.so.2到libc.so.5
到1997年,FSF发布了glibc-2.0,这个版本有很多优点,比如支持有更多的标准,更可移植;linux kernel的人就把"Linux libc"的项目砍掉了,重新使用glibc-2.0,然后就命名为libc.so.6
如果你运行一下这个命令"ls -lh /lib/libc.so.6",你会发现它其实是一个符号链接,在我的电脑上,它指向了"/lib/libc-2.9.so"
6.2 申请内存的方式共有多少种?
参考文献:glibc manual中的第3章(见http://www.gnu.org/software/libc/manual/)
exec
fork
进程内:
global var or static var
local var
malloc()
memory map file

你可能感兴趣的:(有感于STL的内存管理 [存档])