I2C通讯

I2C通讯
[ 2007-4-28 4:40:00 | By: CANopen ]
 

    二线制总线,Philips推出的一种串行总线方式,通过SDA(串行数据线)及SCL(串行时钟线)构成I2C总线在IC器件之间通讯,通过软件寻址识别每个器件而不需要片选线;挂接在I2C总线上的每个I2C器件都有唯一的设备地址,设备内的端口寻址不在I2C通讯协议范围内,具体由每个I2C设备规约。I2C标准波特率为100Kbit/s,最高传输速率可达400Kbit/s。

电气连接:I2C总线接口均为开漏或开集电极输出,因此需要为总线增加上拉电阻。

总线时序:一次数据传输,通过起始和结束信号识别。字节数据高位先发送,发送起始信号之后的第一字节具有特别的意义,前七位为从器件地址,后一位为读写方向位(1:R;0:W)。数据传送过程中,每传送一个字节,都必须有应答信号(A),主器件在接受数据时,若要结束通讯须在停止位之前发送非应答信号(非A)。

 


     1.I2C总线的基本结构
    采用I2C总线标准的MCU或I2C器件,其内部不仅有I2C接口电路,而且将内部各单元电路按功能划分为若干相对独立的模块,通过软件寻址实现片选,减少了器件片选线的连接。CPU不仅能通过指令将某个功能单元电路挂靠或摘离总线,还可对该单元的工作状况进行检测,从而实现对硬件系统的既简单又灵活的扩展与控制。

    2.双向传输的接口特性
    I2C总线则根据器件的功能通过软件配置可工作于发送或接收方式。当某个器件向总线上发送信息时,它就是发送器(也叫主器件),而当其从总线上接收信息时,又成为接收器(也叫从器件)。主器件用于启动总线上传送数据并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件。
    SDA和SCL均为双向I/O线,通过上拉电阻接正电源。当总线空闲时,两根线表现为高电平。连接总线的器件的输出级一般为集电极或漏极开路,以实现线“与”功能。I2C总线的数据传送速率在标准工作方式下为100kbit/s,在快速方式下,最高传送速率可达400kbit/s。

    3.I2C总线上的时钟信号
    在I2C总线上传送信息时的时钟同步信号是由挂接在SCL时钟线上的所有器件的逻辑“与”完成的。SCL线上由高电平到低电平的跳变将影响到这些器件,一旦某个器件的时钟信号下跳为低电平,将使SCL线一直保持低电平,使SCL线上的所有器件开始低电平期。此时,低电平周期短的器件的时钟由低至高的跳变并不能影响SCL线的状态,于是这些器件将进入高电平等待的状态。
  当所有器件的时钟信号都上跳为高电平时,低电平期结束,SCL线被释放返回高电平,即所有的器件都同时开始它们的高电平期。其后,第一个结束高电平期的器件又将SCL线拉成低电平。这样就在SCL线上产生一个同步时钟。可见,时钟低电平时间由时钟低电平期最长的器件确定,而时钟高电平时间由时钟高电平期最短的器件确定。

    4.数据的传送
    数据传送过程中,必须确认数据传送的开始和结束。当时钟线SCL为高电平时,数据线SDA由高电平跳变为低电平定义为“开始”信号;当SCL线为高电平时,SDA线发生低电平到高电平的跳变为“结束”信号。开始和结束信号都是由主器件产生。在开始信号以后,总线即被认为处于忙状态;在结束信号以后的一段时间内,总线被认为是空闲的。
  I2C总线的数据传送格式是:在I2C总线开始信号后,送出的第一个字节数据是用来选择从器件地址的,其中前7位为地址码,第8位为方向位(R/W)。方向位为“0”表示发送,即主器件把信息写到所选择的从器件;方向位为“1”表示主器件将从从器件读信息。开始信号后,系统中的各个器件将自己的地址和主器件送到总线上的地址进行比较,如果与主器件发送到总线上的地址一致,则该器件即为被主器件寻址的器件,其接收信息还是发送信息则由第8位(R/W)确定。
  在I2C总线上每次传送的数据字节数不限,但每一个字节必须为8位,而且每个传送的字节后面必须跟一个认可位(第9位),也叫应答位(ACK)。先传最高位,通常从器件在接收到每个字节后都会作出响应,即释放SCL线返回高电平,准备接收下一个数据字节,主器件可继续传送。如果从器件正在处理一个实时事件而不能接收数据时,(例如正在处理一个内部中断,在这个中断处理完之前就不能接收I2C总线上的数据字节)可以使时钟SCL线保持低电平,从器件必须使SDA保持高电平,此时主器件产生1个结束信号,使传送异常结束,迫使主器件处于等待状态。当从器件处理完毕时将释放SCL线,主器件继续传送。
  当主器件发送完一个字节的数据后,接着发出对应于SCL线上的一个时钟(ACK)认可位,在此时钟内主器件释放SDA线,一个字节传送结束,而从器件的响应信号将SDA线拉成低电平,使SDA在该时钟的高电平期间为稳定的低电平。从器件的响应信号结束后,SDA线返回高电平,进入下一个传送周期。
  I2C总线还具有广播呼叫地址用于寻址总线上所有器件的功能。若一个器件不需要广播呼叫寻址中所提供的任何数据,则可以忽略该地址不作响应。如果该器件需要广播呼叫寻址中提供的数据,则应对地址作出响应,其表现为一个接收器。

    5.总线竞争的仲裁
    总线上可能挂接有多个器件,有时会发生两个或多个主器件同时想占用总线的情况。例如,多单片机系统中,可能在某一时刻有两个单片机要同时向总线发送数据,这种情况叫做总线竞争。I2C总线具有多主控能力,可以对发生在SDA线上的总线竞争进行仲裁,其仲裁原则是这样的:当多个主器件同时想占用总线时,如果某个主器件发送高电平,而另一个主器件发送低电平,则发送电平与此时SDA总线电平不符的那个器件将自动关闭其输出级。总线竞争的仲裁是在两个层次上进行的。首先是地址位的比较,如果主器件寻址同一个从器件,则进入数据位的比较,从而确保了竞争仲裁的可靠性。由于是利用I2C总线上的信息进行仲裁,因此不会造成信息的丢失。

    6. I2C总线接口器件
    目前在视频处理、移动通信等领域采用I2C总线接口器件已经比较普遍。另外,通用的I2C总线接口器件,如带I2C总线的单片机、RAM、ROM、A/D、D/A、LCD驱动器等器件,也越来越多地应用于计算机及自动控制系统中。
【转:I2C总线忽悠记】:
一般串行数据通讯都有时钟和数据之分,有异步和同步之别.  有单线,双线和三线等.
I2C肯定是2线的(不算地线).
I2C协议确实很科学,比3/4线的SPI要好,当然线多通讯速率相对就快了.
I2C的原则是:
在SCL=1(高电平)时,SDA千万别忽悠!!!
否则,SDA下跳则"判罚"为"起始信号S",SDA上跳则"判罚"为"停止信号P".
在SCL=0(低电平)时,SDA随便忽悠!!!(可别忽悠过火到SCL跳高)
每个字节后应该由对方回送一个应答信号ACK做为对方在线的标志.
非应答信号一般在所有字节的最后一个字节后.一般要由双方协议签定.
SCL必须由主机发送,否则天下大乱.
首字节是"片选信号",即7位从机地址加1位方向(读写)控制.
从机收到(听到)自己的地址才能发送应答信号(必须应答!!!)表示自己在线.
其他地址的从机不允许忽悠!!!(当然群呼可以忽悠但只能听不许说话)
读写是站在主机的立场上定义的.
"读"是主机接收从机数据,"写"是主机发送数据给从机.
重复位主要用于主机从发送模式到接收模式的转换"信号",由于只有2线,
所以收发转换肯定要比SPI复杂,因为SPI可用不同的边沿来收发数据,而I2C不行.
在硬件I2C模块,特别是MCU/ARM/DSP等每个阶段都会得到一个准确的状态码,
根据这个状态码可以很容易知道现在在什么状态和什么出错信息.
7位I2C总线可以挂接127个不同地址的I2C设备,0号"设备"作为群呼地址.
10位I2C总线可以挂接更多的10位I2C设备.
总之,只要掌握I2C的忽悠记,一般很容易掌控...

虽然在大的方面SCL速率由主机控制,但也很难匹配所有速率的从机.
因为从机必须在每个不同的状态阶段做出不同的处理,故从机为了能
在此阶段不让主机进入下个状态阶段,采用拉低SCL(线与)来迫使主机
停留在此阶段等待从机处理结束,等从机结束后,主机才能做作SCL.
因为此时从机才释放SCL总线!!!
所谓"分离系统",即从机可脱机运行,在需要时在上线联机.
而且多从机可以同地址而主机可采用一些特殊手段进行动态识别,
然后分配给各从机一个虚拟地址,这样与不同地址的多从机操作一样简单.
这里的难度就是多从机同时上线的地址识别问题...
注意这里有"..."了!!!

你可能感兴趣的:(单片机)