TOMCAT JVM调优

近期换装了64位系统,不知道怎么的Tomcat老是内存溢出,经查资料得出以下经验:

本文介绍了Java内存溢出的详细解决方案。本文总结内存溢出主要有两种情况,而JVM经常调用垃圾回收器解决内存堆不足的问题,但是有时仍会有内存不足的错误。作者分析了JVM内存区域组成及JVM设置虚拟内存的方式,从而给出了一系列解决方案。
 

 

一、内存溢出类型

1、java.lang.OutOfMemoryError: PermGen space

JVM 管理两种类型的内存,堆和非堆。堆是给开发人员用的上面说的就是,是在JVM启动时创建;非堆是留给JVM自己用的,用来存放类的信息的。它和堆不同,运 行期内GC不会释放空间。如果web app用了大量的第三方jar或者应用有太多的class文件而恰好MaxPermSize设置较小,超出了也会导致这块内存的占用过多造成溢出,或者 tomcat热部署时侯不会清理前面加载的环境,只会将context更改为新部署的,非堆存的内容就会越来越多。

PermGen space的全称是Permanent Generation space,是指内存的永久保存区域,这块内存主要是被JVM存放Class和Meta信息的,Class在被Loader时就会被放到PermGen space中,它和存放类实例(Instance)的Heap区域不同,GC(Garbage Collection)不会在主程序运行期对PermGen space进行清理,所以如果你的应用中有很CLASS的话,就很可能出现PermGen space错误,这种错误常见在web服务器对JSP进行pre compile的时候。如果你的WEB APP下都用了大量的第三方jar, 其大小超过了jvm默认的大小(4M)那么就会产生此错误信息了。 
一个最佳的配置例子:(经过本人验证,自从用此配置之后,再未出现过tomcat死掉的情况)

set JAVA_OPTS=-Xms800m -Xmx800m -XX:PermSize=128M -XX:MaxNewSize=256m -XX:MaxPermSize=256m

2、java.lang.OutOfMemoryError: Java heap space

第 一种情况是个补充,主要存在问题就是出现在这个情况中。其默认空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4。如果内 存剩余不到40%,JVM就会增大堆到Xmx设置的值,内存剩余超过70%,JVM就会减小堆到Xms设置的值。所以服务器的Xmx和Xms设置一般应该 设置相同避免每次GC后都要调整虚拟机堆的大小。假设物理内存无限大,那么JVM内存的最大值跟操作系统有关,一般32位机是1.5g到3g之间,而64 位的就不会有限制了。

注意:如果Xms超过了Xmx值,或者堆最大值和非堆最大值的总和超过了物理内存或者操作系统的最大限制都会引起服务器启动不起来。

垃圾回收GC的角色

JVM调用GC的频度还是很高的,主要两种情况下进行垃圾回收:

当应用程序线程空闲;另一个是java内存堆不足时,会不断调用GC,若连续回收都解决不了内存堆不足的问题时,就会报out of memory错误。因为这个异常根据系统运行环境决定,所以无法预期它何时出现。

根据GC的机制,程序的运行会引起系统运行环境的变化,增加GC的触发机会。

为了避免这些问题,程序的设计和编写就应避免垃圾对象的内存占用和GC的开销。显示调用System.GC()只能建议JVM需要在内存中对垃圾对象进行回收,但不是必须马上回收,

一个是并不能解决内存资源耗空的局面,另外也会增加GC的消耗。

二、JVM内存区域组成

简单的说java中的堆和栈

java把内存分两种:一种是栈内存,另一种是堆内存

1。在函数中定义的基本类型变量和对象的引用变量都在函数的栈内存中分配;

2。堆内存用来存放由new创建的对象和数组

在函数(代码块)中定义一个变量时,java就在栈中为这个变量分配内存空间,当超过变量的作用域后,java会自动释放掉为该变量所分配的内存空间;在堆中分配的内存由java虚拟机的自动垃圾回收器来管理

堆的优势是可以动态分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的。缺点就是要在运行时动态分配内存,存取速度较慢;

栈的优势是存取速度比堆要快,缺点是存在栈中的数据大小与生存期必须是确定的无灵活性。

java堆分为三个区:New、Old和Permanent

GC有两个线程:

新创建的对象被分配到New区,当该区被填满时会被GC辅助线程移到Old区,当Old区也填满了会触发GC主线程遍历堆内存里的所有对象。Old区的大小等于Xmx减去-Xmn

java栈存放

栈调整:参数有+UseDefaultStackSize -Xss256K,表示每个线程可申请256k的栈空间

每个线程都有他自己的Stack

三、JVM如何设置虚拟内存

提示:在JVM中如果98%的时间是用于GC且可用的Heap size 不足2%的时候将抛出此异常信息。

提示:Heap Size 最大不要超过可用物理内存的80%,一般的要将-Xms和-Xmx选项设置为相同,而-Xmn为1/4的-Xmx值。

提示:JVM初始分配的内存由-Xms指定,默认是物理内存的1/64;JVM最大分配的内存由-Xmx指定,默认是物理内存的1/4。

默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。因此服务器一般设置-Xms、-Xmx相等以避免在每次GC 后调整堆的大小。

提示:假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。

简单的说就32位处理器虽然可控内存空间有4GB,但是具体的操作系统会给一个限制,

这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系统下为2G-3G),而64bit以上的处理器就不会有限制了

提示:注意:如果Xms超过了Xmx值,或者堆最大值和非堆最大值的总和超过了物理内存或者操作系统的最大限制都会引起服务器启动不起来。

提示:设置NewSize、MaxNewSize相等,"new"的大小最好不要大于"old"的一半,原因是old区如果不够大会频繁的触发"主" GC ,大大降低了性能

JVM使用-XX:PermSize设置非堆内存初始值,默认是物理内存的1/64;

由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4。

解决方法:手动设置Heap size

修改TOMCAT_HOME/bin/catalina.bat

在“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行:

JAVA_OPTS="-server -Xms800m -Xmx800m -XX:MaxNewSize=256m"

四、性能检查工具使用

定位内存泄漏:

JProfiler工具主要用于检查和跟踪系统(限于Java开发的)的性能。JProfiler可以通过时时的监控系统的内存使用情况,随时监视垃圾回收,线程运行状况等手段,从而很好的监视JVM运行情况及其性能。

1. 应用服务器内存长期不合理占用,内存经常处于高位占用,很难回收到低位;

2. 应用服务器极为不稳定,几乎每两天重新启动一次,有时甚至每天重新启动一次;

3. 应用服务器经常做Full GC(Garbage Collection),而且时间很长,大约需要30-40秒,应用服务器在做Full GC的时候是不响应客户的交易请求的,非常影响系统性能。

因为开发环境和产品环境会有不同,导致该问题发生有时会在产品环境中发生,通常可以使用工具跟踪系统的内存使用情况,在有些个别情况下或许某个时刻确实是使用了大量内存导致out of memory,这时应继续跟踪看接下来是否会有下降,

如果一直居高不下这肯定就因为程序的原因导致内存泄漏。

五、不健壮代码的特征及解决办法

1、尽早释放无用对象的引用。好的办法是使用临时变量的时候,让引用变量在退出活动域后,自动设置为null,暗示垃圾收集器来收集该对象,防止发生内存泄露。

对于仍然有指针指向的实例,jvm就不会回收该资源,因为垃圾回收会将值为null的对象作为垃圾,提高GC回收机制效率;

2、我们的程序里不可避免大量使用字符串处理,避免使用String,应大量使用StringBuffer,每一个String对象都得独立占用内存一块区域;

String str = "aaa";

String str2 = "bbb";

String str3 = str + str2;//假如执行此次之后str ,str2以后再不被调用,那它就会被放在内存中等待Java的gc去回收,程序内过多的出现这样的情况就会报上面的那个错误,建议在使用字符串时能使用 StringBuffer就不要用String,这样可以省不少开销;

3、尽量少用静态变量,因为静态变量是全局的,GC不会回收的;

4、避免集中创建对象尤其是大对象,JVM会突然需要大量内存,这时必然会触发GC优化系统内存环境;显示的声明数组空间,而且申请数量还极大。

这是一个案例想定供大家警戒

使用jspsmartUpload作文件上传,运行过程中经常出现java.outofMemoryError的错误,

检查之后发现问题:组件里的代码

m_totalBytes = m_request.getContentLength();

m_binArray = new byte[m_totalBytes];

问题原因是totalBytes这个变量得到的数极大,导致该数组分配了很多内存空间,而且该数组不能及时释放。解决办法只能换一种更合适的办法,至少是不会引发outofMemoryError的方式解决。参考:http://bbs.xml.org.cn/blog/more.asp?name=hongrui&id=3747

5、尽量运用对象池技术以提高系统性能;生命周期


java虽然是自动回收内存,但是应用程序,尤其服务器程序最好根据业务情况指明内存分配限制。否则可能导致应用程序宕掉。

举例说明含义:
-Xms128m 
表示JVM Heap(堆内存)最小尺寸128MB,初始分配
-Xmx512m 
表示JVM Heap(堆内存)最大允许的尺寸256MB,按需分配。

说明:如果-Xmx不指定或者指定偏小,应用可能会导致java.lang.OutOfMemory错误,此错误来自JVM不是Throwable的,无法用try...catch捕捉。

PermSize和MaxPermSize指明虚拟机为java永久生成对象(Permanate generation)如,class对象、方法对象这些可反射(reflective)对象分配内存限制,这些内存不包括在Heap(堆内存)区之中。

-XX:PermSize=64MB 最小尺寸,初始分配
-XX:MaxPermSize=256MB 最大允许分配尺寸,按需分配
过小会导致:java.lang.OutOfMemoryError: PermGen space

MaxPermSize缺省值和-server -client选项相关。
-server选项下默认MaxPermSize为64m
-client选项下默认MaxPermSize为32m


经验:
1、慎用最小限制选项Xms,PermSize已节约系统资源。

 

一 JVM内存模型

1.1 Java栈

Java栈是与每一个线程关联的,JVM在创建每一个线程的时候,会分配一定的栈空间给线程。它主要用来存储线程执行过程中的局部变量,方法的返回 值,以及方法调用上下文。栈空间随着线程的终止而释放。StackOverflowError:如果在线程执行的过程中,栈空间不够用,那么JVM就会抛 出此异常,这种情况一般是死递归造成的。

1.2 堆

Java中堆是由所有的线程共享的一块内存区域,堆用来保存各种JAVA对象,比如数组,线程对象等。

1.2.1 Generation

JVM堆一般又可以分为以下三部分:

JVM堆的三部分

◆ Perm

Perm代主要保存class,method,filed对象,这部门的空间一般不会溢出,除非一次性加载了很多的类,不过在涉及到热部署的应用服 务器的时候,有时候会遇到java.lang.OutOfMemoryError : PermGen space 的错误,造成这个错误的很大原因就有可能是每次都重新部署,但是重新部署后,类的class没有被卸载掉,这样就造成了大量的class对象保存在了 perm中,这种情况下,一般重新启动应用服务器可以解决问题。

◆ Tenured

Tenured区主要保存生命周期长的对象,一般是一些老的对象,当一些对象在Young复制转移一定的次数以后,对象就会被转移到Tenured区,一般如果系统中用了application级别的缓存,缓存中的对象往往会被转移到这一区间。

◆ Young

Young区被划分为三部分,Eden区和两个大小严格相同的Survivor区,其中Survivor区间中,某一时刻只有其中一个是被使用的, 另外一个留做垃圾收集时复制对象用,在Young区间变满的时候,minor GC就会将存活的对象移到空闲的Survivor区间中,根据JVM的策略,在经过几次垃圾收集后,任然存活于Survivor的对象将被移动到 Tenured区间。

1.2.2 Sizing the Generations

JVM提供了相应的参数来对内存大小进行配置。正如上面描述,JVM中堆被分为了3个大的区间,同时JVM也提供了一些选项对Young,Tenured的大小进行控制。

JVM的相关参数

◆ Total Heap

-Xms :指定了JVM初始启动以后初始化内存

-Xmx:指定JVM堆得最大内存,在JVM启动以后,会分配-Xmx参数指定大小的内存给JVM,但是不一定全部使用,JVM会根据-Xms参数来调节真正用于JVM的内存

-Xmx -Xms之差就是三个Virtual空间的大小

◆ Young Generation

-XX:NewRatio=8意味着tenured 和 young的比值8:1,这样eden+2*survivor=1/9

堆内存

-XX:SurvivorRatio=32意味着eden和一个survivor的比值是32:1,这样一个Survivor就占Young区的1/34.

-Xmn 参数设置了年轻代的大小

◆ Perm Generation

-XX:PermSize=16M -XX:MaxPermSize=64M

Thread Stack

-XX:Xss=128K

1.3 堆栈分离的好处

呵呵,其它的先不说了,就来说说面向对象的设计吧,当然除了面向对象的设计带来的维护性,复用性和扩展性方面的好处外,我们看看面向对象如何巧妙的 利用了堆栈分离。如果从JAVA内存模型的角度去理解面向对象的设计,我们就会发现对象它完美的表示了堆和栈,对象的数据放在堆中,而我们编写的那些方法 一般都是运行在栈中,因此面向对象的设计是一种非常完美的设计方式,它完美的统一了数据存储和运行。 
 

     
 

二 JAVA垃圾收集器

2.1 垃圾收集简史

垃圾收集提供了内存管理的机制,使得应用程序不需要在关注内存如何释放,内存用完后,垃圾收集会进行收集,这样就减轻了因为人为的管理内存而造成的 错误,比如在C++语言里,出现内存泄露时很常见的。Java语言是目前使用最多的依赖于垃圾收集器的语言,但是垃圾收集器策略从20世纪60年代就已经 流行起来了,比如Smalltalk,Eiffel等编程语言也集成了垃圾收集器的机制。

2.2 常见的垃圾收集策略

常见的垃圾收集策略

所有的垃圾收集算法都面临同一个问题,那就是找出应用程序不可到达的内存块,将其释放,这里面得不可到达主要是指应用程序已经没有内存块的引用了, 而在JAVA中,某个对象对应用程序是可到达的是指:这个对象被根(根主要是指类的静态变量,或者活跃在所有线程栈的对象的引用)引用或者对象被另一个可 到达的对象引用。

2.2.1 Reference Counting(引用计数)
 
引用计数是最简单直接的一种方式,这种方式在每一个对象中增加一个引用的计数,这个计数代表当前程序有多少个引用引用了此对象,如果此对象的引用计数变为0,那么此对象就可以作为垃圾收集器的目标对象来收集。

优点:

简单,直接,不需要暂停整个应用

缺点:

1.需要编译器的配合,编译器要生成特殊的指令来进行引用计数的操作,比如每次将对象赋值给新的引用,或者者对象的引用超出了作用域等。

2.不能处理循环引用的问题

2.2.2 跟踪收集器

跟踪收集器首先要暂停整个应用程序,然后开始从根对象扫描整个堆,判断扫描的对象是否有对象引用,这里面有三个问题需要搞清楚:

JVM的跟踪收集器

1.如果每次扫描整个堆,那么势必让GC的时间变长,从而影响了应用本身的执行。因此在JVM里面采用了分代收集,在新生代收集的时候minor gc只需要扫描新生代,而不需要扫描老生代。

2.JVM采用了分代收集以后,minor gc只扫描新生代,但是minor gc怎么判断是否有老生代的对象引用了新生代的对象,JVM采用了卡片标记的策略,卡片标记将老生代分成了一块一块的,划分以后的每一个块就叫做一个卡 片,JVM采用卡表维护了每一个块的状态,当JAVA程序运行的时候,如果发现老生代对象引用或者释放了新生代对象的引用,那么就JVM就将卡表的状态设 置为脏状态,这样每次minor gc的时候就会只扫描被标记为脏状态的卡片,而不需要扫描整个堆。具体如下图:
3.GC在收集一个对象的时候会判断是否有引用指向对象,在JAVA中的引用主要有四种:Strong reference,Soft reference,Weak reference,Phantom reference.

◆ Strong Reference

强引用是JAVA中默认采用的一种方式,我们平时创建的引用都属于强引用。如果一个对象没有强引用,那么对象就会被回收。

 
  
  1. public void testStrongReference(){  
  2. Object referent = new Object();  
  3. Object strongReference = referent;  
  4. referent = null;  
  5. System.gc();  
  6. assertNotNull(strongReference);  

◆ Soft Reference

软引用的对象在GC的时候不会被回收,只有当内存不够用的时候才会真正的回收,因此软引用适合缓存的场合,这样使得缓存中的对象可以尽量的再内存中待长久一点。

 
  
  1. Public void testSoftReference(){  
  2. String  str =  "test";  
  3. SoftReference softreference = new SoftReference(str);  
  4. str=null;  
  5. System.gc();  
  6. assertNotNull(softreference.get());  
  7. }  

◆ Weak reference

弱引用有利于对象更快的被回收,假如一个对象没有强引用只有弱引用,那么在GC后,这个对象肯定会被回收。

 
  
  1. Public void testWeakReference(){  
  2. String  str =  "test";  
  3. WeakReference weakReference = new WeakReference(str);  
  4. str=null;  
  5. System.gc();  
  6. assertNull(weakReference.get());  
  7. }  

◆ Phantom reference

2.2.2.1 Mark-Sweep Collector(标记-清除收集器)

标记清除收集器最早由Lisp的发明人于1960年提出,标记清除收集器停止所有的工作,从根扫描每个活跃的对象,然后标记扫描过的对象,标记完成以后,清除那些没有被标记的对象。

优点:

1 解决循环引用的问题

2 不需要编译器的配合,从而就不执行额外的指令

缺点:

1.每个活跃的对象都要进行扫描,收集暂停的时间比较长。

2.2.2.2 Copying Collector(复制收集器)复制收集器将内存分为两块一样大小空间,某一个时刻,只有一个空间处于活跃的状态,当活跃的空间满的时候,GC就会将活 跃的对象复制到未使用的空间中去,原来不活跃的空间就变为了活跃的空间。复制收集器具体过程可以参考下图:

TOMCAT JVM调优_第1张图片

优点:

1 只扫描可以到达的对象,不需要扫描所有的对象,从而减少了应用暂停的时间

缺点:

1.需要额外的空间消耗,某一个时刻,总是有一块内存处于未使用状态

2.复制对象需要一定的开销

2.2.2.3 Mark-Compact Collector(标记-整理收集器)标记整理收集器汲取了标记清除和复制收集器的优点,它分两个阶段执行,在第一个阶段,首先扫描所有活跃的对象,并 标记所有活跃的对象,第二个阶段首先清除未标记的对象,然后将活跃的的对象复制到堆得底部。标记整理收集器的过程示意图请参考下图:Mark- compact策略极大的减少了内存碎片,并且不需要像Copy Collector一样需要两倍的空间。 
 

TOMCAT JVM调优_第2张图片

2.3 JVM的垃圾收集策略
 
GC的执行时要耗费一定的CPU资源和时间的,因此在JDK1.2以后,JVM引入了分代收集的策略,其中对新生代采用"Mark-Compact"策 略,而对老生代采用了“Mark-Sweep"的策略。其中新生代的垃圾收集器命名为“minor gc”,老生代的GC命名为"Full Gc 或者Major GC".其中用System.gc()强制执行的是Full Gc.

2.3.1 Serial Collector

Serial Collector是指任何时刻都只有一个线程进行垃圾收集,这种策略有一个名字“stop the whole world",它需要停止整个应用的执行。这种类型的收集器适合于单CPU的机器。

Serial Copying Collector

此种GC用-XX:UseSerialGC选项配置,它只用于新生代对象的收集。1.5.0以后。 -XX:MaxTenuringThreshold来设置对象复制的次数。当eden空间不够的时候,GC会将eden的活跃对象和一个名叫From survivor空间中尚不够资格放入Old代的对象复制到另外一个名字叫To Survivor的空间。而此参数就是用来说明到底From survivor中的哪些对象不够资格,假如这个参数设置为31,那么也就是说只有对象复制31次以后才算是有资格的对象。这里需要注意几个个问题:

◆  From Survivor和To survivor的角色是不断的变化的,同一时间只有一块空间处于使用状态,这个空间就叫做From Survivor区,当复制一次后角色就发生了变化。

◆  如果复制的过程中发现To survivor空间已经满了,那么就直接复制到old generation.

◆  比较大的对象也会直接复制到Old generation,在开发中,我们应该尽量避免这种情况的发生。

Serial  Mark-Compact Collector

串行的标记-整理收集器是JDK5 update6之前默认的老生代的垃圾收集器,此收集使得内存碎片最少化,但是它需要暂停的时间比较长。

2.3.2 Parallel Collector 

Parallel Collector主要是为了应对多CPU,大数据量的环境。Parallel Collector又可以分为以下两种:

Parallel Copying Collector

此种GC用-XX:UseParNewGC参数配置,它主要用于新生代的收集,此GC可以配合CMS一起使用。1.4.1以后Parallel Mark-Compact Collector,此种GC用-XX:UseParallelOldGC参数配置,此GC主要用于老生代对象的收集。1.6.0

Parallel scavenging Collector

此种GC用-XX:UseParallelGC参数配置,它是对新生代对象的垃圾收集器,但是它不能和CMS配合使用,它适合于比较大新生代的情 况,此收集器起始于jdk 1.4.0。它比较适合于对吞吐量高于暂停时间的场合,Serial gc和Parallel gc可以用如下的图来表示:

TOMCAT JVM调优_第3张图片

2.3.3 Concurrent Collector

Concurrent Collector通过并行的方式进行垃圾收集,这样就减少了垃圾收集器收集一次的时间,这种GC在实时性要求高于吞吐量的时候比较有用。此种GC可以用 参数-XX:UseConcMarkSweepGC配置,此GC主要用于老生代和Perm代的收集。

TOMCAT JVM调优_第4张图片

你可能感兴趣的:(TOMCAT JVM调优)