自然语言处理深度生成模型相关资源、会议和论文分享

自然语言处理深度生成模型相关资源、会议和论文分享_第1张图片

    本资源整理了自然语言处理相关深度生成模型资源,会议和相关的一些前沿论文,分享给需要的朋友。

    本资源整理自:https://github.com/FranxYao/Deep-Generative-Models-for-Natural-Language-Processing

 

    当谈到深层生成模型时,通常指三个模型族:变分自动编码器(VAEs)、生成对抗网络(GANs)和归一化流(Normalizing Flows)。

 

    在这三大模型家族中,我们将更多地关注VAE相关的模型,因为它们更有效。GAN是否真的有效仍然是一个悬而未决的问题。GANs的有效性更像是判别器(discriminator)的正则化,而不是“生成”部分。

    

    自然语言处理的VAE模型涉及许多离散结构。对这些结构的推断既复杂又聪明。本资源整理了相关的一些资源、论文和会议。

    

资源部分

    图形模型基础

    在我们旅程开始之前,DGMs的基础是建立在概率图形模型上的。所以我们首先要了解这些模型。

    推荐三门不错的课程:

    Blei's Foundation of Graphical Models course, STAT 6701 at Columbia 

 

    Xing's Probabilistic Graphical Models, 10-708 at CMU

 

    Collins' Natural Language Processing, COMS 4995 at Columbia

 

    两本不错的书:

    Pattern Recognition and Machine Learning. Christopher M. Bishop. 2006

 

    Machine Learning: A Probabilistic Perspective. Kevin P. Murphy. 2012

 

深度生成模型

    分享一些DGMS相关不错的资源:

    Wilker Aziz's DGM Landscape 

 

    A Tutorial on Deep Latent Variable Models of Natural Language (link), EMNLP 18

    Yoon Kim, Sam Wiseman and Alexander M. Rush, Havard

 

    Deep Generative Models for Natural Language Processing, Ph.D. Thesis 17

  Yishu Miao, Oxford

 

    Stanford CS 236, Deep Generative Models (link)

 

    NYU Deep Generative Models

 

    U Toronto CS 2541 Differentiable Inference and Generative Models, CS 2547 Learning Discrete Latent Structures.

    相关知识点思维导图

自然语言处理深度生成模型相关资源、会议和论文分享_第2张图片

    不一定全面正确,待补充。

    

NLP相关

    主要关注两个主题:生成和结构推理

    生成部分

    Generating Sentences from a Continuous Space, CoNLL 15

    Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, Samy Bengio

    

    Spherical Latent Spaces for Stable Variational Autoencoders, EMNLP 18

    Jiacheng Xu and Greg Durrett, UT Austin

   

    Semi-amortized variational autoencoders, ICML 18

    Yoon Kim, Sam Wiseman, Andrew C. Miller, David Sontag, Alexander M. Rush, Havard

    

    Lagging Inference Networks and Posterior Collapse in Variational Autoencoders, ICLR 19

    Junxian He, Daniel Spokoyny, Graham Neubig, Taylor Berg-Kirkpatrick

 

    Avoiding Latent Variable Collapse with Generative Skip Models, AISTATS 19

    Adji B. Dieng, Yoon Kim, Alexander M. Rush, David M. Blei

 

    结构推理

    这部分整理结构推理相关的工作,涉及自然语言处理分块,标记和解析三个部分任务。

 

    An introduction to Conditional Random Fields. Charles Sutton and Andrew McCallum. 2012

    Linear-chain CRFs. Modeling, inference and parameter estimation

 

    Inside-Outside and Forward-Backward Algorithms Are Just Backprop. Jason Eisner. 2016.

 

    Differentiable Dynamic Programming for Structured Prediction and Attention. Arthur Mensch and Mathieu Blondel. ICML 2018

    To differentiate the max operator in dynamic programming.

 

    Structured Attention Networks. ICLR 2017

    Yoon Kim, Carl Denton, Luong Hoang, Alexander M. Rush

 

    Recurrent Neural Network Grammars. NAACL 16

    Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah Smith.

 

    Unsupervised Recurrent Neural Network Grammars, NAACL 19

    Yoon Kin, Alexander Rush, Lei Yu, Adhiguna Kuncoro, Chris Dyer, and Gabor Melis

 

    Differentiable Perturb-and-Parse: Semi-Supervised Parsing with a Structured Variational Autoencoder, ICLR 19

    Caio Corro, Ivan Titov, Edinburgh

 

离散Reparamterization的一些技巧

    Categorical Reparameterization with Gumbel-Softmax. ICLR 2017

    Eric Jang, Shixiang Gu, Ben Poole

 

    The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. ICLR 2017

    Chris J. Maddison, Andriy Mnih, and Yee Whye Teh

 

    Reparameterizable Subset Sampling via Continuous Relaxations. IJCAI 2019

    Sang Michael Xie and Stefano Ermon

 

    Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. ICML 19

    Wouter Kool, Herke van Hoof, Max Welling

    

机器学习相关

    机器学习相关部分,首先从VAE开始。

 

    VAEs

    Auto-Encoding Variational Bayes, Arxiv 13

    Diederik P. Kingma, Max Welling

 

    Variational Inference: A Review for Statisticians, Arxiv 18

    David M. Blei, Alp Kucukelbir, Jon D. McAuliffe

   

    Stochastic Backpropagation through Mixture Density Distributions, Arxiv 16

    Alex Graves

 

    Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms. AISTATS 2017

    Christian A. Naesseth, Francisco J. R. Ruiz, Scott W. Linderman, David M. Blei

 

    Reparameterizing the Birkhoff Polytope for Variational Permutation Inference. AISTATS 2018

    Scott W. Linderman, Gonzalo E. Mena, Hal Cooper, Liam Paninski, John P. Cunningham.

 

    Implicit Reparameterization Gradients. NeurIPS 2018.

    Michael Figurnov, Shakir Mohamed, and Andriy Mnih

 

    GANs

    Generative Adversarial Networks, NIPS 14

    Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

 

    Towards principled methods for training generative adversarial networks, ICLR 2017

    Martin Arjovsky and Leon Bottou

 

    Wasserstein GAN

    Martin Arjovsky, Soumith Chintala, Léon Bottou

 

Normalizing Flows相关

    Variational Inference with Normalizing Flows, ICML 15

    Danilo Jimenez Rezende, Shakir Mohamed

 

    Improved Variational Inference with Inverse Autoregressive Flow

    Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, Max Welling

 

    Learning About Language with Normalizing Flows

    Graham Neubig, CMU, slides

 

    Latent Normalizing Flows for Discrete Sequences. ICML 2019.

    Zachary M. Ziegler and Alexander M. Rush

    

Reflections and Critics

    需要补充更多论文

    Do Deep Generative Models Know What They Don't Know? ICLR 2019

    Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan

    

更多一些应用

    篇章和多样化

    Paraphrase Generation with Latent Bag of Words. NeurIPS 2019.

    Yao Fu, Yansong Feng, and John P. Cunningham

 

    A Deep Generative Framework for Paraphrase Generation, AAAI 18

    Ankush Gupta, Arvind Agarwal, Prawaan Singh, Piyush Rai

 

    Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization, NIPS 18

    Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, Bill Dolan

 

    主题相关语言生成

    Discovering Discrete Latent Topics with Neural Variational Inference, ICML 17

    Yishu Miao, Edward Grefenstette, Phil Blunsom. Oxford

 

    Topic-Guided Variational Autoencoders for Text Generation, NAACL 19

    Wenlin Wang, Zhe Gan, Hongteng Xu, Ruiyi Zhang, Guoyin Wang, Dinghan Shen, Changyou Chen, Lawrence Carin. Duke & MS & Infinia & U Buffalo

 

    TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency, ICLR 17

    Adji B. Dieng, Chong Wang, Jianfeng Gao, John William Paisley

 

    Topic Compositional Neural Language Model, AISTATS 18

    Wenlin Wang, Zhe Gan, Wenqi Wang, Dinghan Shen, Jiaji Huang, Wei Ping, Sanjeev Satheesh, Lawrence Carin

 

    Topic Aware Neural Response Generation, AAAI 17

    Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, Wei-Ying Ma

往期精品内容推荐

斯坦福NLP大佬Chris Manning新课-《信息检索和网页搜索2019》分析

元学习-从小样本学习到快速强化学习-ICML2019

新书-计算机视觉、机器人及机器学习线性代数基础-最新版分享

多任务强化学习蒸馏与迁移学习

深度学习实战-从源码解密AlphGo Zero背后基本原理

2018/2019/校招/春招/秋招/自然语言处理/深度学习/机器学习知识要点及面试笔记

最新深度学习面试题目及答案集锦

历史最全-16个推荐系统开放公共数据集整理分享

一文告诉你Adam、AdamW、Amsgrad区别和联系,助你实现Super-convergence的终极目标

基于深度学习的文本分类6大算法-原理、结构、论文、源码打包分享

2018-深度学习与自然语言处理-最新教材推荐

李宏毅-深度学习与生成对抗学习基础-2018年(春)课程分享

你可能感兴趣的:(深度学习与NLP,深度学习视频教程及资料下载,深度学习与机器翻译)