two visual domains: X ∈ R H × W × 3 \mathcal{X}\in\mathbb{R}^{H\times W\times 3} X∈RH×W×3, Y ∈ R H × W × 3 \mathcal{Y}\in\mathbb{R}^{H\times W\times 3} Y∈RH×W×3
unpaired samples: x ∈ X x\in\mathcal{X} x∈X, y ∈ Y y\in\mathcal{Y} y∈Y
如Fig.3所示,整个framework包含
Our approach embeds input images onto a shared content space C \mathcal{C} C, and domain-
speci c attribute spaces, A X \mathcal{A}_\mathcal{X} AX and A Y \mathcal{A}_\mathcal{Y} AY.
这个思想特别好,因为无论是哪一个domain,content信息是公共的,与domain无关的
但attribute是带有各自domain特性的,是domain相关的
4个Encoder所做的事情
{ z x c , z x a } = { E X c ( x ) , E X a ( x ) } z x c ∈ C , z x a ∈ A X { z y c , z y a } = { E Y c ( y ) , E Y a ( y ) } z y c ∈ C , z y a ∈ A Y ( 1 ) \begin{aligned} &\left \{ z_x^c, z_x^a \right \}=\left \{ E_\mathcal{X}^c(x), E_\mathcal{X}^a(x) \right \}\qquad z_x^c\in\mathcal{C}, z_x^a\in\mathcal{A}_\mathcal{X} \\ &\left \{ z_y^c, z_y^a \right \}=\left \{ E_\mathcal{Y}^c(y), E_\mathcal{Y}^a(y) \right \}\qquad z_y^c\in\mathcal{C}, z_y^a\in\mathcal{A}_\mathcal{Y} \qquad(1) \end{aligned} {zxc,zxa}={EXc(x),EXa(x)}zxc∈C,zxa∈AX{zyc,zya}={EYc(y),EYa(y)}zyc∈C,zya∈AY(1)
对于 { E X c , E Y c } \left \{ E_\mathcal{X}^c, E_\mathcal{Y}^c \right \} {EXc,EYc},共享最后一层
对于 { G X , G Y } \left \{ G_\mathcal{X}, G_\mathcal{Y} \right \} {GX,GY},共享第一层
Through weight sharing, we force the content representation to be mapped onto the same space.
Q:不知道作者是否做了对比实验来验证共享的好处
为了进一步增强content空间的公共性,引入一个content discriminator D c D^c Dc,用于辨别 { z x c , z y c } \left \{ z_x^c, z_y^c \right \} {zxc,zyc},于是有content adversarial loss如下
L a d v c o n t e n t = ( 2 ) L_{adv}^{content}= \qquad(2) Ladvcontent=(2)
注:在content空间添加判别器,最终会使得两个domain的content分布逼近,由此实现domain无关,这一点和自己的ACMMM18论文思想一样的,叙述上也是从information的角度来描述
利用Encoder,将图像 x , y x, y x,y分别分解为content成分和attribute成分,然后进行“移花接木”