本文记录一些该书中出现的知识,方便需要使用的时候查询。
隐含波动率是在其他条件下不变的情况下,输入公式不同期权行权价格和到期日测得的市场报价的那些波动率值。
这种情况下隐含波动率不是模型/公式的输入参数,而是对该公式进行某项数字化优化过程的结果
a = 10000
a.bit_length() #结果为17位
term = 10**100
term.bit_lengt() #结果为333位
6.1 pandas
data_range函数
freq参数选值
plot方法(Pandas在matplotplib接口上)
pandas对应时间片处理方法
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
#以三分钟为时间片统计 每三分钟的内数据的累计总和
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
#向下填充获得每分钟的数据累计和
a.resample(rule = '1min').ffill()
2000-01-01 00:00:00 3
2000-01-01 00:01:00 3
2000-01-01 00:02:00 3
2000-01-01 00:03:00 12
2000-01-01 00:04:00 12
2000-01-01 00:05:00 12
2000-01-01 00:06:00 21
Freq: T, dtype: int64
高性能Python
由于Python过于动态的特性,因此对科学计算速度并不是很快,因此有三种加速方式:Numba,pypy,Cython。
1. Numba
jit 的全称是 Just-in-time,在 numba 里面则特指 Just-in-time compilation(即时编译)。Numba不支持列表表达式,其优势是对任意函数应用该方法毫不费力。
http://m.blog.csdn.net/hl541867329/article/details/75637324
http://blog.csdn.net/seekiu/article/details/46730951
2.Cython
3.pypy
https://www.zhihu.com/question/24695645?sort=created
4.GPU