- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- 芯科科技通过全新并发多协议SoC重新定义智能家居连接
电子科技圈
SiliconLabs智能家居边缘计算mcu物联网iot人工智能机器学习
MG26系列SoC现已全面供货,为开发人员提供最高性能和人工智能/机器学习功能致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商SiliconLabs(亦称“芯科科技”,NASDAQ:SLAB),日前宣布其MG26系列无线片上系统(SoC)现已通过芯科科技及其分销合作伙伴全面供货。作为业界迄今为止最先进、高性能的Matter和并发多协议解决方案,MG26SoC的闪存和RAM容量是芯科科技
- 【Python编程】Python交互式应用框架巅峰对决 —— Streamlit vs Gradio
木亦汐丫
Python编程StreamlitGradioJupyterHuggingFacePandasPyTorchTensorFlow
Streamlit和Gradio都是非常受欢迎的Python交互式应用框架,但在构建Python交互式Web应用时该如何选择?它们各有独特的设计理念和适用场景,以下是基于功能特性、开发效率和应用场景的对比分析:一、核心定位与功能对比特性GradioStreamlit核心目标快速部署机器学习模型交互界面构建数据科学和复杂交互应用输入/输出支持支持文本、图像、音频、视频等基础组件支持更丰富的交互组件(
- 机器学习平台系列(一) - 初探 Jupyter Notebook 认证机制
窝窝和牛牛
机器学习平台PythonJupyterNotebookJupyterHub安全多租户
最近准备调研下JupyterNotebook的单用户安全机制(认证)以及如何实现多租户,以便集成到公司的云平台,进而作为基于大数据平台的机器学习平台的一部分。1.问题分析数据分析以及算法团队的同学使用JupyterNotebook进行数据分析和建模等工作,其工作流程如下所示:业务部门以组为单位申请一台物理服务器搭建Python环境,启动JupyterNotebook,每个同学创建自己的工程,进行代
- 《机器学习实战:从数据清洗到云端部署的可视化进阶指南(三)》
庸俗今天不摸鱼
机器学习人工智能python
▍前言:阶段核心突破当前已完成模型开发与优化升级核心任务,成功将理论模型转化为工业级解决方案。本阶段基于前期标准化数据,实现从基础模型构建到高性能算法迭代的跨越式发展。▍章节回顾:攻坚与优化成果3.模型开发阶段算法实现:逻辑回归:搭建分类基线(LogisticRegression,准确率基准)支持向量机:对比线性核与RBF核性能差异(F1-score提升12%)K近邻:动态优化邻居数(k=5时验证
- 2025全球机器学习技术大会即将召开:汇聚全球AI顶尖专家,共话未来技术趋势
量子位
由CSDN与Boolan联合主办的「2025全球机器学习技术大会」(MLSummit2025)将于4月18日至19日在上海虹桥西郊庄园丽笙大酒店隆重举行。本次大会汇聚全球AI领域的顶级学者、行业领袖和技术专家,共同探讨大模型技术演进、智能体、代码大模型、多模态技术等前沿话题,为参会者提供全方位的技术解读与行业洞察。大会亮点:顶级嘉宾阵容,前沿议题聚焦本次大会的主会环节将邀请多位全球AI领域的重量级
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 【好书推荐7】《机器学习平台架构实战》
是Yu欸
粉丝福利机器学习架构人工智能awsk8sdocker
【好书推荐7】《机器学习平台架构实战》写在最前面《机器学习平台架构实战》编辑推荐内容简介作者简介目录前言本书读者内容介绍充分利用本书下载示例代码文件下载彩色图像本书约定你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面感谢大家的陪伴和支持,2024年争取每周二开展粉丝福利送书活动,欢迎关注~第7波福利感谢清华出版社的大力支持本
- Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习模型评估与改进评估指标与评分召回率
Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明目录Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明一、简单介绍二、评估指标与评分1、牢记最终目标2、二分类指标1)错误类型2)不平衡数据集3)混淆矩阵4)考虑不确定性5)准确率-召回率曲线6)受试者工作特征(ROC)与AUC3、多分类指标4、回归指标5、在模型选择中使用评估指标附录一、参考文献一、简单介绍Py
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 【大模型学习】第八章 深入理解机器学习技术细节
好多渔鱼好多
AI大模型机器学习AI大模型人工智能
目录引言一、监督学习(SupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:房价预测二、无监督学习(UnsupervisedLearning)1.定义与工作原理2.常见任务3.应用场景示例:客户细分三、强化学习(ReinforcementLearning)1.定义与工作原理2.常见应用场景3.应用场景示例:游戏AI四、集成学习(EnsembleLearning)1.
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- L1与L2正则化:防止过拟合的双刃剑
XianxinMao
人工智能人工智能机器学习算法
标题:L1与L2正则化:防止过拟合的双刃剑文章信息摘要:L1和L2正则化是防止机器学习模型过拟合的两种关键技术。L1正则化(Lasso)通过将不重要的特征权重归零来实现特征选择,适用于稀疏模型和高维数据集,但可能导致欠拟合。L2正则化(Ridge)则通过减少权重的大小来防止过拟合,适用于处理高度相关特征和噪声数据,提高模型稳定性。两者各有优势,选择哪种正则化技术取决于数据集特性和模型需求。有时,结
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- Python从0到100(十八):面向对象编程应用
是Dream呀
python开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 智能云图库项目实战(4)---空间模块
rain雨雨编程
项目实战权限管理锁机制事务云图库Spring
♂️个人主页:@rain雨雨编程微信公众号:rain雨雨编程✍作者简介:持续分享机器学习,爬虫,数据分析希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录本节重点一、需求分析二、方案设计空间的必要性空间库表设计1.空间表2、图片表公共图库和空间的关系三、后端开发空间管理1、数据模型2、基础服务开发3、接口开发用户创建私有空间1、创建空间流程2、创建空间服务扩展知
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 机器学习笔记
有涯小学生
赵卫东机器学习笔记机器学习人工智能
1概述1.1简介机器学习(MachineLearning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。“对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。”(汤姆·米切尔(TomMitchell),1997,MachineLearning)1.2机器学习、人工智能、数据挖掘从本质上看,数据科学的目标是通过处理各
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- Python在机器学习与数据分析领域的深度应用:从基础到实战
CodeJourney.
python算法
在当今数字化时代,数据如同宝贵的矿产资源,蕴含着无尽的价值等待挖掘。Python作为一门强大而灵活的编程语言,凭借其丰富的库和工具,在机器学习和数据分析领域扮演着举足轻重的角色。它不仅为数据科学家和开发者提供了高效处理和分析数据的手段,还助力构建各种智能模型,实现精准预测和决策支持。本文将深入探讨Python在机器学习和数据分析领域的应用,涵盖机器学习基础概念、Pandas库的使用技巧、数据分析实
- Python神器 Jupyter Notebook
懒大王爱吃狼
pythonpython开发语言Python基础python学习服务器
JupyterNotebook是Python领域中备受推崇的一款神器,以下是对其的详细介绍:一、概述JupyterNotebook是一款开放源代码的Web应用程序,它允许用户创建和共享包含实时代码、方程式、可视化和叙述文本的文档。它适用于数据分析、可视化、机器学习等多种场景,尤其在数据科学领域中广受欢迎。二、安装与配置JupyterNotebook可以通过多种方式进行安装,其中最常见的是通过安装A
- 费曼学习法11 - NumPy 的 “线性代数” 之力:矩阵运算与应用 (应用篇)
修昔底德
Python费曼学习法线性代数学习numpypython人工智能深度学习
第六篇:NumPy的“线性代数”之力:矩阵运算与应用(应用篇)开篇提问:考虑一个实际问题:图像的旋转。当你使用图像编辑软件旋转照片时,背后是什么在驱动图像像素的精确移动?答案是线性代数。图像可以表示为数值矩阵,而旋转、缩放、剪切等图像变换,都可以通过矩阵运算来实现。线性代数不仅是图像处理的基石,也在机器学习、物理模拟、工程计算等众多领域扮演着核心角色。它提供了一套强大的数学工具,用于描述和解决多维
- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- 机器学习校招面经二
Y1nhl
搜广推面经机器学习人工智能算法推荐算法数据挖掘搜索算法pytorch
快手机器学习算法一、AUC(AreaUndertheROCCurve)怎么计算?AUC接近1可能的原因是什么?见【搜广推校招面经四】AUC是评估分类模型性能的重要指标,用于衡量模型在不同阈值下区分正负样本的能力。它是ROC曲线(ReceiverOperatingCharacteristicCurve)下的面积。1.1.ROC曲线的坐标ROC曲线以真正例率(TruePositiveRate,TPR)
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。