使用方法:
1、Looper.prepare()
2、创建Handler实例,重写handleMessage处理函数
3、Looper.loop()
4、调用相关的发送Message函数,将消息发送出去
5、调用相关处理函数处理
Androidxref.com - Looper.java源码链接
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
// 每个线程拥有一个Lopper,不能多次创建
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed); // 创建了对应的MessageQueue
mRun = true;
mThread = Thread.currentThread();
}
Looper中会创建MessageQueue,并设置当前运行状态和当前线程
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
/** Returns the application's main looper, which lives in the main thread of the application.*/
public static Looper getMainLooper() {
synchronized (Looper.class) {
return sMainLooper;
}
}
负责分发消息,主要通过在for循环中实现
Message msg = queue.next();
msg.target.dispatchMessage(msg);
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper(); // 获取Looper
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue; // 获取其MessageQueue
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
// 取出一条消息
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
// 分发消息
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycle();
}
}
Androidxref - MessageQueue源码链接
Androidxref - android_os_MessageQueue.cpp源码链接
Androidxref - Looper.cpp源码链接
为了能够很多的理解该类的作用,主要从三方面入手:创建过程、消息处理、发送消息
源码中定义了5个native函数,分别实现了MessageQueue的主体功能
private native static int nativeInit();
private native static void nativeDestroy(int ptr);
private native static void nativePollOnce(int ptr, int timeoutMillis);
private native static void nativeWake(int ptr);
private native static boolean nativeIsIdling(int ptr);
Looper在创建过程中会创建一个MessageQueue,并将其存放到成员变量mQueue中
// MessageQueue构造函数
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
主要调用了nativeInit()函数来实现创建功能
static jint android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
// 调用NativeMessageQueue
NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
if (!nativeMessageQueue) {
jniThrowRuntimeException(env, "Unable to allocate native queue");
return 0;
}
nativeMessageQueue->incStrong(env);
return reinterpret_cast(nativeMessageQueue);
}
NativeMessageQueue函数,该函数功能主要创建本地Looper类对象,从功能函数中可以看到,MessageQueue最后操作的对象还是Native层Looper类对象
NativeMessageQueue::NativeMessageQueue() : mInCallback(false), mExceptionObj(NULL) {
mLooper = Looper::getForThread();
if (mLooper == NULL) {
mLooper = new Looper(false);
Looper::setForThread(mLooper);
}
}
Looper.cpp构造函数
Looper创建过程主要是创建管道、使用epoll来监听管道上的数据
Looper::Looper(bool allowNonCallbacks) :
mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
int wakeFds[2];
// 创建匿名管道
int result = pipe(wakeFds);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
mWakeReadPipeFd = wakeFds[0];
mWakeWritePipeFd = wakeFds[1];
// 读写管道设置为非阻塞
result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
errno);
result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
errno);
mIdling = false;
// Allocate the epoll instance and register the wake pipe.
// 创建epoll对象并进行注册
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
struct epoll_event eventItem;
memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeReadPipeFd;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, & eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
errno);
}
MessageQueue.next()用于取出一条消息
Message next() {
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
// 调用本地方法等待nextPollTimeoutMillis,具体等待时候会在下方msg中不断更新
nativePollOnce(mPtr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
// mMessages指向队列头
Message msg = mMessages;
if (msg != null && msg.target == null) {
// 当msg.target为null,即该消息为SyncBarrier,则忽略该消息,并向后找到第一个异步消息
do {
prevMsg = msg;
msg = msg.next;
// 找到第一个isAsynchronous标志msg
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
// 该消息执行时间未到,等待nextPollTimeoutMillis
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
// 类似于链表删除,将要处理的消息从中断开
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (false) Log.v("MessageQueue", "Returning message: " + msg);
msg.markInUse();
// 返回要处理的消息
return msg;
}
} else {
// No more messages.
// 当等待时间为-1时阻塞
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
// 当没有消息要处理,检查是否安装了idle回调函数,调用并获取其状态
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle(); // 返回该处理的函数的状态
} catch (Throwable t) {
Log.wtf("MessageQueue", "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler); // 移除
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0; // 重置等待时间
}
}
nativePollOnce函数,等待功能通过epoll_wait实现
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jclass clazz,
jint ptr, jint timeoutMillis) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast(ptr);
nativeMessageQueue->pollOnce(env, timeoutMillis); // 调用pollOnce
}
void NativeMessageQueue::pollOnce(JNIEnv* env, int timeoutMillis) {
mInCallback = true;
mLooper->pollOnce(timeoutMillis); // 调用Looper pollOnce
mInCallback = false;
if (mExceptionObj) {
env->Throw(mExceptionObj);
env->DeleteLocalRef(mExceptionObj);
mExceptionObj = NULL;
}
}
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
...
...
result = pollInner(timeoutMillis);
}
int Looper::pollInner(int timeoutMillis) {
...
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
...
}
向MessageQueue中发送消息使用enqueueMessage
主要是根据时间插入消息,要考虑有SybBarrier和异步消息的情况
boolean enqueueMessage(Message msg, long when) {
if (msg.isInUse()) { // 如果消息正在处理,则报错
throw new AndroidRuntimeException(msg + " This message is already in use.");
}
if (msg.target == null) { // 如果消息target为空,则报错
throw new AndroidRuntimeException("Message must have a target.");
}
synchronized (this) { // 使用this来同步,表示一次只能有一个进入enqueueMessage
if (mQuitting) {
RuntimeException e = new RuntimeException(
msg.target + " sending message to a Handler on a dead thread");
Log.w("MessageQueue", e.getMessage(), e);
return false;
}
msg.when = when;
Message p = mMessages; // 获取头消息
boolean needWake;
// 插入消息操作
// 1. 当前没有消息,则插入头部
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
// 判断是否有SynBarrier && 是否有异步消息
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
// 根据消息的时间来确定存放的位置
if (p == null || when < p.when) {
break;
}
// 如果有异步消息,则不用唤醒
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
// 插入线程
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
// 唤醒线程
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
这个就不再多说了,直接给出源码:
Androidxref - Message.java源码链接
Handler主要实现的是消息的发送和处理
两种方式: send && post
该方法是根据Message自身的ID来判断,从而执行不同的处理操作
public final boolean sendMessage(Message msg);
public final boolean sendEmptyMessage(int what);
public final boolean sendEmptyMessageDelayed(int what, long delayMillis);
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis);
public final boolean sendMessageDelayed(Message msg, long delayMillis);
public boolean sendMessageAtTime(Message msg, long uptimeMillis);
public final boolean sendMessageAtFrontOfQueue(Message msg);
而Post方法则是需要有消息的响应代码,不再局限于预定于内容,而是可以定制相关处理方法
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
public final boolean postAtTime(Runnable r, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
public final boolean postAtFrontOfQueue(Runnable r)
{
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}