pytorch 搭建的基于LSTM自编码器对数据降维并采用KNN算法对鸢尾花分类

LSTM搭建自编码器提取特征,KNN分类

import torch
import torch.nn as nn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 超参数
EPOCH = 200
LR = 0.005



data = load_iris()
y = data.target
x = data.data


#X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
#print(y_train)

class RNN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.rnn = torch.nn.LSTM(
            input_size=4,
            hidden_size=64,
            num_layers=1,
            batch_first=True
        )
        self.out = torch.nn.Linear(in_features=64, out_features=3)


        self.rnn_2 = torch.nn.LSTM(
            input_size=3,
            hidden_size=64,
            num_layers=1,
            batch_first=True
        )
        self.out_2 = torch.nn.Linear(in_features=64, out_features=4)

    def forward(self, x):
        # 一下关于shape的注释只针对单项
        # output: [batch_size, time_step, hidden_size]
        # h_n: [num_layers,batch_size, hidden_size] # 虽然LSTM的batch_first为True,但是h_n/c_n的第一维还是num_layers
        # c_n: 同h_n
        output, (h_n, c_n) = self.rnn(x)
        # output_in_last_timestep=output[:,-1,:] # 也是可以的
        output_in_last_timestep = h_n[-1, :, :]
        # print(output_in_last_timestep.equal(output[:,-1,:])) #ture
        encode = self.out(output_in_last_timestep)

        output1, (h_n1, c_n1) = self.rnn_2(encode.view(-1, 1, 3))
        # output_in_last_timestep=output[:,-1,:] # 也是可以的
        output_in_last_timestep1 = h_n1[-1, :, :]
        # print(output_in_last_timestep.equal(output[:,-1,:])) #ture
        decode = self.out_2(output_in_last_timestep1)
        return encode, decode


net = RNN()
# 3. 训练
# 3. 网络的训练(和之前CNN训练的代码基本一样)
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
loss_F = torch.nn.MSELoss()
for epoch in range(500):  # 数据集只迭代一次

    x1 = torch.from_numpy(x).unsqueeze(0).float()
    x2 = torch.from_numpy(x).unsqueeze(0).float()
    _, pred = net(x1.view(-1, 1, 4))

    loss = loss_F(pred, x2)  # 计算loss
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())


pred, _ = net(x1.view(-1, 1, 4))
print(pred)
print(pred.shape)
pred = pred.squeeze(1).detach().numpy()
print(pred)



from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score

knn = KNeighborsClassifier(n_neighbors=5)
scores = cross_val_score(knn, pred, y, cv=6, scoring='accuracy')
print(scores)

 

你可能感兴趣的:(机器学,人工智能,pytorch)