【我的架构师之路】- golang源码分析之select的底层实现

【转载请标明出处】https://blog.csdn.net/qq_25870633/article/details/83339538

最近本人再找工作,恩,虽然本人使用go有2年左右了,但是其实还只是停留在语言使用的技巧位面,语言的很多底层实现机制还不是很清楚的,所以面试被问到很多底层,就很懵逼。这篇文章主要是自己对go学习的笔记。(本人还是一只菜鸡,各位海涵)

文章参考:

http://www.debugrun.com/a/vJjDJmZ.html

https://ninokop.github.io/2017/11/07/Go-Select%E7%9A%84%E5%AE%9E%E7%8E%B0/

http://xargin.com/go-select/

https://blog.csdn.net/u011957758/article/details/82230316

那么select的实现在go的源码包runtime中,路径为:./src/runtime/select.go。下面,我们先来看select的使用方式:

select {
  case c1 <-1: 
    // TODO somethings
  case <-c2: 
    // TODO somethings
  default: 
    // TODO somethings
}

其实上述代码真正做了下面几件事:

创建select  –>  注册case  –>  执行select  –>  释放select

然后,我们先说一说,select主要是用到的函数:

runtime.reflect_rselect()
runtime.newselect()
runtime.selectsend()
runtime.selectrecv()
runtime.selectdefault()
runtime.selectgo()

先来看定义的几个常量:

const (
	// scase.kind
	caseNil = iota  // 0 :表示case 为nil;在send 或者 recv 发生在一个 nil channel 上,就有可能出现这种情况
	caseRecv        // 1 : 表示case 为接收通道 <- ch
	caseSend        // 2 :表示case 为发送通道 ch <-
	caseDefault     // 3 :表示 default 语句块
)

然后接着来看几个重要的结构体:

/**
定义select 结构
*/
type hselect struct {
	tcase     uint16   // total count of scase[]      总的case数目
	ncase     uint16   // currently filled scase[]    目前已经注册的case数目     
	pollorder *uint16  // case poll order             【超重要】 轮询的case序号
	lockorder *uint16  // channel lock order          【超重要】chan的锁定顺序

    // case 数组,为了节省一个指针的 8 个字节搞成这样的结构
    // 实际上要访问后面的值,还是需要进行指针移动
    // 指针移动使用 runtime 内部的 add 函数
	scase     [1]scase // one per case (in order of appearance)  【超重要】保存当前case操作的chan (按照轮询顺序)
}



/**
select 中每一个case的定义
*/
type scase struct {
	elem        unsafe.Pointer // data element                           数据指针
	c           *hchan         // chan                                   当前case所对应的chan引用
	pc          uintptr        // return pc (for race detector / msan)   和汇编中的pc同义,表示 程序计数器,用于指示当前将要执行的下一条机器指令的内存地址
	kind        uint16         // 通道的类型
	receivedp   *bool // pointer to received bool, if any
	releasetime int64
}

我们可以看出,hselect中scase字段其实是一个单元素的数组,那么我们肯定很奇怪。只用来保存当前case所操作的case?那么其他case操作的chan都在哪里呢?通过参考文章:https://ninokop.github.io/2017/11/07/Go-Select%E7%9A%84%E5%AE%9E%E7%8E%B0/ 及 http://www.debugrun.com/a/vJjDJmZ.html

那么具体是什么时候去做上面我们所说的:创建select  –>  注册case  –>  执行select  –>  释放select 我们会看到下面

//go:linkname reflect_rselect reflect.rselect
func reflect_rselect(cases []runtimeSelect) (chosen int, recvOK bool) {
	// flagNoScan is safe here, because all objects are also referenced from cases.
	size := selectsize(uintptr(len(cases)))
	sel := (*hselect)(mallocgc(size, nil, true))
	newselect(sel, int64(size), int32(len(cases)))
	r := new(bool)
	for i := range cases {
		rc := &cases[i]
		switch rc.dir {
		case selectDefault:
			selectdefault(sel)
		case selectSend:
			selectsend(sel, rc.ch, rc.val)
		case selectRecv:
			selectrecv(sel, rc.ch, rc.val, r)
		}
	}

	chosen = selectgo(sel)
	recvOK = *r
	return
}

可以看得出来,其实该函数的真正外部触发是在 reflect包中的rselct() 函数【具体为什么请自行研究下 //go:linkname  的使用】。而当前这个函数呢其实是先实例化一个 select 实例,然后根据 入参的 cases 逐个的去注册对应的 chan操作,最后调用 selectgo(sel) 去执行case。下面我们再来看看实例化select:

实例化select:

func newselect(sel *hselect, selsize int64, size int32) {
	if selsize != int64(selectsize(uintptr(size))) {
		print("runtime: bad select size ", selsize, ", want ", selectsize(uintptr(size)), "\n")
		throw("bad select size")
	}
	sel.tcase = uint16(size)
	sel.ncase = 0

    // hselect 这个结构体的是长下面这样:
    // 【超重要】 header |scase[0]|scase[1]|scase[2]|lockorder[0]|lockorder[1]|lockorder[2]|pollorder[0]|pollorder[1]|pollorder[2]
    // 各个 channel 加锁的顺序

	sel.lockorder = (*uint16)(add(unsafe.Pointer(&sel.scase), uintptr(size)*unsafe.Sizeof(hselect{}.scase[0])))

    // case 轮询的顺序初始化
	sel.pollorder = (*uint16)(add(unsafe.Pointer(sel.lockorder), uintptr(size)*unsafe.Sizeof(*hselect{}.lockorder)))

	if debugSelect {
		print("newselect s=", sel, " size=", size, "\n")
	}
}

可以看出来,newselect就是在内存上创建一个选择器。其实就是初始化了某些内存空间。然后紧接着就是遍历所有的case通过判断反射得到的case中的类型去注册相应的注册函数。

具体的我们再来看看hselect,hselect的最后是一个[1]scase表示select中只保存了一个case的空间,说明hselect在内存只是个头部,select后面保存了所有的scase,这段Scases的大小就是tcase。在 go runtime实现中经常看到这种 头部+连续内存 的方式

 

此图就是整个具备 6 个case 的选择器的内存模型了,这一整块内存结构其实也是由 头部结构数据结构  组成,头部就是 Select那一部分,对应上面提到的 hselect数据结构就是 由数组组成

可以看到 lockorder、pollorder以及scase 【黑色部分】都是6个单元的数组,黑色部分的scase的第一个单元位于Select头部结构内存空间中,这个单元就是 hselect结构体中的 [1]scase的内容了。在开辟上图的这块内存时,从头部开始这一整块内存是由一次类malloc(为什么是类malloc,因为Go有自己的内存管理接口,不是采用的普通malloc)调用分配的,然后再将Select头部结构中的lockorder和pollorder两个指针分别指向正确的位置即可。当然,在一口气分配这块内存前,是事先算好了所有需要的内存的大小的。在malloc分配这块内存的时候,scase就只需要分配一个单元就可以了,所以上图中可以看出只是多加了5个scase的 存储单元。这样一来,scase字段和lockorder、pollorder就没有什么两样了,殊途同归。然后这三者的内容的填充都是在注册case中完成。

好了,现在我们知道其实在go内部是用了连续内存的方式来存储select及case中的内容

注册case:

select中注册case channel有三种,分别是:selectsendselectrecvselectdefault 分别对应着不同的case。他们的注册方式一致,都是 ncase+1 (记录目前已经注册的case数目),然后按照当前的 index 填充scases域的scase数组的相关字段,主要是用case中的chan和case类型填充c和kind字段。代码如下:

/**
主要针对 case send 通道
如:
select {
  case ch<-1: 
}
*/
func selectsend(sel *hselect, c *hchan, elem unsafe.Pointer) {
	pc := getcallerpc(unsafe.Pointer(&sel))
	i := sel.ncase
	if i >= sel.tcase {
		throw("selectsend: too many cases")
	}
    
    // 注册数量加一
	sel.ncase = i + 1
	if c == nil {
		return
	}

     // 初始化对应的 scase 结构
	cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0])))
	cas.pc = pc
	cas.c = c
	cas.kind = caseSend
	cas.elem = elem

	if debugSelect {
		print("selectsend s=", sel, " pc=", hex(cas.pc), " chan=", cas.c, "\n")
	}
}




/**
主要针对 case recv 通道
如:
select {
    case <-ch: ==> 这时候就会调用 selectrecv; case ,ok <- ch: 也可以这样写
}

在 ch 被关闭时,这个 case 每次都可能被轮询到
*/
func selectrecv(sel *hselect, c *hchan, elem unsafe.Pointer, received *bool) {
	pc := getcallerpc(unsafe.Pointer(&sel))
	i := sel.ncase
	if i >= sel.tcase {
		throw("selectrecv: too many cases")
	}
    
    // 注册数量加一
	sel.ncase = i + 1
	if c == nil {
		return
	}

    // 初始化对应的 scase 结构
	cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0])))
	cas.pc = pc
	cas.c = c
	cas.kind = caseRecv
	cas.elem = elem
	cas.receivedp = received

	if debugSelect {
		print("selectrecv s=", sel, " pc=", hex(cas.pc), " chan=", cas.c, "\n")
	}
}



/**
主要针对 default
如:
select {
    default:
}
*/
func selectdefault(sel *hselect) {
	pc := getcallerpc(unsafe.Pointer(&sel))
	i := sel.ncase
	if i >= sel.tcase {
		throw("selectdefault: too many cases")
	}
    
    // 注册数量加一
	sel.ncase = i + 1
    
    // 初始化对应的 scase 结构
	cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0])))
	cas.pc = pc
	cas.c = nil
	cas.kind = caseDefault

	if debugSelect {
		print("selectdefault s=", sel, " pc=", hex(cas.pc), "\n")
	}
}

select的执行:

pollorder:保存的是scase的序号,乱序是为了之后执行时的随机性。

lockorder:保存了所有case中channel的地址,这里按照地址大小堆排了一下lockorder对应的这片连续内存。对chan排序是为了去重,保证之后对所有channel上锁时不会重复上锁

select 语句执行时会对整个chanel加锁

select 语句会创建select对象 如果放在for循环中长期执行可能会频繁的分配内存

select执行过程总结如下:

  • 通过pollorder的序号,遍历scase找出已经准备好的case。如果有就执行普通的chan读写操作。其中准备好的case是指 可以不阻塞完成读写chan的case,或者读已经关闭的chan的case
  • 如果没有准备好的case,则尝试defualt case。
  • 如果以上都没有,则把当前的 G (协程)封装好挂到scase所有chan的阻塞链表中,按照chan的操作类型挂到sendq或recvq中。
  • 这个 G 被某个chan唤醒,遍历scase找到目标case,放弃当前G在其他chan中的等待,返回。

在说执行之前我们先来看一下加锁解锁:


// 对所有 case 对应的 channel 加锁
// 需要按照 lockorder 数组中的元素索引来搞
// 否则可能有循环等待的死锁
func sellock(scases []scase, lockorder []uint16) {
	var c *hchan
	for _, o := range lockorder {
		c0 := scases[o].c
		if c0 != nil && c0 != c {
			c = c0
            
            // 其实也是用对应的hchan中的mutex去对当前hchan操作
            // hchan 被定义在 ./src/runtime/chan.go 中,就是channel的定义
			lock(&c.lock)
		}
	}
}


// 解锁,比较简单
func selunlock(scases []scase, lockorder []uint16) {
	// We must be very careful here to not touch sel after we have unlocked
	// the last lock, because sel can be freed right after the last unlock.
	// Consider the following situation.
	// First M calls runtime·park() in runtime·selectgo() passing the sel.
	// Once runtime·park() has unlocked the last lock, another M makes
	// the G that calls select runnable again and schedules it for execution.
	// When the G runs on another M, it locks all the locks and frees sel.
	// Now if the first M touches sel, it will access freed memory.

    /**
        我们必须非常小心,在我们解锁最后一个锁之后不要触摸sel,因为sel可以在最后一次解锁后立即释放。
        考虑以下情况:
        第一个M在运行时调用runtime·park()·selectgo()传递sel。
        一旦runtime·park()解锁了最后一个锁,另一个M使得再次调用select runnable的G并安排它执行。
        当G在另一个M上运行时,它会锁定所有锁并释放sel。
        现在,如果第一个M接触sel,它将访问释放的内存。
    */
	for i := len(scases) - 1; i >= 0; i-- {
		c := scases[lockorder[i]].c
		if c == nil {
			break
		}
		if i > 0 && c == scases[lockorder[i-1]].c {
			continue // will unlock it on the next iteration
		}
            // 其实也是用对应的hchan中的mutex去对当前hchan操作
            // hchan 被定义在 ./src/runtime/chan.go 中,就是channel的定义
		unlock(&c.lock)
	}
}



/**
和 gopark 相关的
*/
func selparkcommit(gp *g, _ unsafe.Pointer) bool {
	// This must not access gp's stack (see gopark). In
	// particular, it must not access the *hselect. That's okay,
	// because by the time this is called, gp.waiting has all
	// channels in lock order.

        /**
            这不能访问gp的堆栈(参见gopark)。 特别是,它不能访问* hselect。 没关系,因为在调用它的时候,gp.waiting的所有通道都处于锁定状态。
        */
	var lastc *hchan
	for sg := gp.waiting; sg != nil; sg = sg.waitlink {
		if sg.c != lastc && lastc != nil {
			// As soon as we unlock the channel, fields in
			// any sudog with that channel may change,
			// including c and waitlink. Since multiple
			// sudogs may have the same channel, we unlock
			// only after we've passed the last instance
			// of a channel.

            /**
                一旦我们解锁频道,任何具有该频道的sudog中的字段都可能发生变化,包括c和     waitlink。 由于多个sudog可能具有相同的通道,因此只有在我们通过了通道的最后一个实例后才会解锁。
            */
			unlock(&lastc.lock)
		}
		lastc = sg.c
	}
	if lastc != nil {
		unlock(&lastc.lock)
	}
	return true
}

下面我们来说一说,如何执行select吧,具体代码如下:


// selectgo 是在初始化完成之后执行 select 逻辑的函数
// 返回值是要执行的 scase 的 index
func selectgo(sel *hselect) int {
	if debugSelect {
		print("select: sel=", sel, "\n")
	}
	if sel.ncase != sel.tcase {
		throw("selectgo: case count mismatch")
	}
    

         // len 和 cap 就是 scase 的总数
        // 这时候 ncase 和 tcase 已经是相等的了
	scaseslice := slice{unsafe.Pointer(&sel.scase), int(sel.ncase), int(sel.ncase)}
	scases := *(*[]scase)(unsafe.Pointer(&scaseslice))

	var t0 int64
	if blockprofilerate > 0 {
		t0 = cputicks()
		for i := 0; i < int(sel.ncase); i++ {
			scases[i].releasetime = -1
		}
	}

	// The compiler rewrites selects that statically have
	// only 0 or 1 cases plus default into simpler constructs.
	// The only way we can end up with such small sel.ncase
	// values here is for a larger select in which most channels
	// have been nilled out. The general code handles those
	// cases correctly, and they are rare enough not to bother
	// optimizing (and needing to test).
    
    /**
        编译器将静态只有0或1个案例的选择重写为更简单的构造。 我们在这里得到如此小的sel.ncase值的唯一方法是选择大多数通道已被填充的更大选择。 通用代码正确处理这些情况,并且它们非常罕见,不会打扰优化(并且需要测试)。
    */

	// generate permuted order
    // 生成置换顺序
	pollslice := slice{unsafe.Pointer(sel.pollorder), int(sel.ncase), int(sel.ncase)}
	pollorder := *(*[]uint16)(unsafe.Pointer(&pollslice))

    /**
    洗牌
    */
	for i := 1; i < int(sel.ncase); i++ {
		j := fastrandn(uint32(i + 1))
		pollorder[i] = pollorder[j]
		pollorder[j] = uint16(i)
	}

	// sort the cases by Hchan address to get the locking order.
	// simple heap sort, to guarantee n log n time and constant stack footprint.
    
    /**
        通过Hchan地址对案例进行排序以获得锁定顺序。
简单的堆排序,以保证n log n时间和不断的堆栈占用。
    */
    // 按 hchan 的地址来进行排序,以生成加锁顺序
    // 用堆排序来保证 nLog(n) 的时间复杂度
	lockslice := slice{unsafe.Pointer(sel.lockorder), int(sel.ncase), int(sel.ncase)}
	lockorder := *(*[]uint16)(unsafe.Pointer(&lockslice))
	for i := 0; i < int(sel.ncase); i++ {
        // 初始化 lockorder 数组
		j := i
		// Start with the pollorder to permute cases on the same channel.
        // 从pollorder开始,在同一频道上置换案例。
		c := scases[pollorder[i]].c
		for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() {
			k := (j - 1) / 2
			lockorder[j] = lockorder[k]
			j = k
		}
		lockorder[j] = pollorder[i]
	}
	for i := int(sel.ncase) - 1; i >= 0; i-- {
		o := lockorder[i]
		c := scases[o].c
		lockorder[i] = lockorder[0]
		j := 0
		for {
			k := j*2 + 1
			if k >= i {
				break
			}
			if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() {
				k++
			}
			if c.sortkey() < scases[lockorder[k]].c.sortkey() {
				lockorder[j] = lockorder[k]
				j = k
				continue
			}
			break
		}
		lockorder[j] = o
	}
	/*
		for i := 0; i+1 < int(sel.ncase); i++ {
			if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() {
				print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n")
				throw("select: broken sort")
			}
		}
	*/

	// lock all the channels involved in the select
    // 锁定选择中涉及的所有通道
    // 对涉及到的所有 channel 都加锁
	sellock(scases, lockorder)

	var (
		gp     *g
		done   uint32
		sg     *sudog
		c      *hchan
		k      *scase
		sglist *sudog
		sgnext *sudog
		qp     unsafe.Pointer
		nextp  **sudog
	)

    /**
    走到这里,说明各种准备工作已经完成,要开始真正干活了
    */    

loop:
	// pass 1 - look for something already waiting
    // 第一部分: 寻找已经等待的东西
	var dfli int
	var dfl *scase
	var casi int
	var cas *scase

    // 虽然看着是一个 for 循环
    // 但实际上有 case ready 的时候
    // 直接就用 goto 跳出了
	for i := 0; i < int(sel.ncase); i++ {
         // 按 pollorder 的顺序进行遍历
		casi = int(pollorder[i])
		cas = &scases[casi]
		c = cas.c

		switch cas.kind {
		case caseNil:
			continue

		case caseRecv:
             // <- ch 的情况
             // 根据有没有等待的 goroutine 队列执行不同的操作
			sg = c.sendq.dequeue()
			if sg != nil {
				goto recv
			}
			if c.qcount > 0 {
				goto bufrecv
			}
			if c.closed != 0 {
				goto rclose
			}

		case caseSend:
            
            // ch <- 1 的情况,也是一些基本的 channel 操作
			if raceenabled {
				racereadpc(unsafe.Pointer(c), cas.pc, chansendpc)
			}
			if c.closed != 0 {
				goto sclose
			}
			sg = c.recvq.dequeue()
			if sg != nil {
				goto send
			}
			if c.qcount < c.dataqsiz {
				goto bufsend
			}

		case caseDefault:
			dfli = casi
			dfl = cas
		}
	}
    
    // 这里是在前面进了 caseDefault 才会走到
	if dfl != nil {
		selunlock(scases, lockorder)
		casi = dfli
		cas = dfl
		goto retc
	}

	// pass 2 - enqueue on all chans
    // 第二部分:在所有的chan上排队
     // 没有任何一个 case 满足,且没有 default
     // 这种情况下需要把当前的 goroutine 入队所有 channel 的等待队列里
	gp = getg()
	done = 0
	if gp.waiting != nil {
		throw("gp.waiting != nil")
	}
	nextp = &gp.waiting
    // 按照加锁的顺序把 gorutine 入每一个 channel 的等待队列
	for _, casei := range lockorder {
		casi = int(casei)
		cas = &scases[casi]
		if cas.kind == caseNil {
			continue
		}
		c = cas.c
		sg := acquireSudog()
		sg.g = gp
		// Note: selectdone is adjusted for stack copies in stack1.go:adjustsudogs
        // selectdone在stack1.go:adjustsudogs中针对堆栈副本进行了调整
		sg.selectdone = (*uint32)(noescape(unsafe.Pointer(&done)))
		// No stack splits between assigning elem and enqueuing
		// sg on gp.waiting where copystack can find it.
        // 在gp.waiting上分配elem和排队sg之间没有堆栈分割,copystack可以在其中找到它。

		sg.elem = cas.elem
		sg.releasetime = 0
		if t0 != 0 {
			sg.releasetime = -1
		}
		sg.c = c
		// Construct waiting list in lock order.
        // 按锁定顺序构造等待列表。
		*nextp = sg
		nextp = &sg.waitlink

		switch cas.kind {
		case caseRecv:
            // recv 的情况进 recvq
			c.recvq.enqueue(sg)

		case caseSend:
             // send 的情况进 sendq
			c.sendq.enqueue(sg)
		}
	}

	// wait for someone to wake us up
    // 等待有人叫醒我们
	gp.param = nil
    // 当前 goroutine 进入休眠,同时解锁channel,等待被唤醒(selparkcommit这里实现的)
	gopark(selparkcommit, nil, "select", traceEvGoBlockSelect, 1)

	// While we were asleep, some goroutine came along and completed
	// one of the cases in the select and woke us up (called ready).
	// As part of that process, the goroutine did a cas on done above
	// (aka *sg.selectdone for all queued sg) to win the right to
	// complete the select. Now done = 1.
	//
	// If we copy (grow) our own stack, we will update the
	// selectdone pointers inside the gp.waiting sudog list to point
	// at the new stack. Another goroutine attempting to
	// complete one of our (still linked in) select cases might
	// see the new selectdone pointer (pointing at the new stack)
	// before the new stack has real data; if the new stack has done = 0
	// (before the old values are copied over), the goroutine might
	// do a cas via sg.selectdone and incorrectly believe that it has
	// won the right to complete the select, executing a second
	// communication and attempting to wake us (call ready) again.
	//
	// Then things break.
	//
	// The best break is that the goroutine doing ready sees the
	// _Gcopystack status and throws, as in #17007.
	// A worse break would be for us to continue on, start running real code,
	// block in a semaphore acquisition (sema.go), and have the other
	// goroutine wake us up without having really acquired the semaphore.
	// That would result in the goroutine spuriously running and then
	// queue up another spurious wakeup when the semaphore really is ready.
	// In general the situation can cascade until something notices the
	// problem and causes a crash.
	//
	// A stack shrink does not have this problem, because it locks
	// all the channels that are involved first, blocking out the
	// possibility of a cas on selectdone.
	//
	// A stack growth before gopark above does not have this
	// problem, because we hold those channel locks (released by
	// selparkcommit).
	//
	// A stack growth after sellock below does not have this
	// problem, because again we hold those channel locks.
	//
	// The only problem is a stack growth during sellock.
	// To keep that from happening, run sellock on the system stack.
	//
	// It might be that we could avoid this if copystack copied the
	// stack before calling adjustsudogs. In that case,
	// syncadjustsudogs would need to recopy the tiny part that
	// it copies today, resulting in a little bit of extra copying.
	//
	// An even better fix, not for the week before a release candidate,
	// would be to put space in every sudog and make selectdone
	// point at (say) the space in the first sudog.
    
    // 有故事发生,被唤醒,再次该select下全部channel加锁
	systemstack(func() {
		sellock(scases, lockorder)
	})

	sg = (*sudog)(gp.param)
	gp.param = nil

	// pass 3 - dequeue from unsuccessful chans
	// otherwise they stack up on quiet channels
	// record the successful case, if any.
	// We singly-linked up the SudoGs in lock order.
    // 被唤醒后执行下面的代码
    
    /**
    从不成功的chans出发,否则他们在安静的频道上叠加记录成功案例,如果有的话。 我们以锁定顺序单独链接SudoGs。
    */
	casi = -1
	cas = nil
	sglist = gp.waiting
	// Clear all elem before unlinking from gp.waiting.
    // 在从gp.waiting取消链接之前清除所有元素。
	for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink {
		sg1.selectdone = nil
		sg1.elem = nil
		sg1.c = nil
	}
	gp.waiting = nil

	for _, casei := range lockorder {
		k = &scases[casei]
		if k.kind == caseNil {
			continue
		}
		if sglist.releasetime > 0 {
			k.releasetime = sglist.releasetime
		}
		if sg == sglist {
			// sg has already been dequeued by the G that woke us up.
			casi = int(casei)
			cas = k
		} else {
			c = k.c
			if k.kind == caseSend {
				c.sendq.dequeueSudoG(sglist)
			} else {
				c.recvq.dequeueSudoG(sglist)
			}
		}
		sgnext = sglist.waitlink
		sglist.waitlink = nil
		releaseSudog(sglist)
		sglist = sgnext
	}
        

    // 如果还是没有的话再次走 loop 逻辑
	if cas == nil {
		// We can wake up with gp.param == nil (so cas == nil)
		// when a channel involved in the select has been closed.
		// It is easiest to loop and re-run the operation;
		// we'll see that it's now closed.
		// Maybe some day we can signal the close explicitly,
		// but we'd have to distinguish close-on-reader from close-on-writer.
		// It's easiest not to duplicate the code and just recheck above.
		// We know that something closed, and things never un-close,
		// so we won't block again.
		goto loop
	}

	c = cas.c

	if debugSelect {
		print("wait-return: sel=", sel, " c=", c, " cas=", cas, " kind=", cas.kind, "\n")
	}

	if cas.kind == caseRecv {
		if cas.receivedp != nil {
			*cas.receivedp = true
		}
	}

	if raceenabled {
		if cas.kind == caseRecv && cas.elem != nil {
			raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
		} else if cas.kind == caseSend {
			raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
		}
	}
	if msanenabled {
		if cas.kind == caseRecv && cas.elem != nil {
			msanwrite(cas.elem, c.elemtype.size)
		} else if cas.kind == caseSend {
			msanread(cas.elem, c.elemtype.size)
		}
	}

	selunlock(scases, lockorder)
	goto retc

bufrecv:
	// can receive from buffer
	if raceenabled {
		if cas.elem != nil {
			raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
		}
		raceacquire(chanbuf(c, c.recvx))
		racerelease(chanbuf(c, c.recvx))
	}
	if msanenabled && cas.elem != nil {
		msanwrite(cas.elem, c.elemtype.size)
	}
	if cas.receivedp != nil {
		*cas.receivedp = true
	}
	qp = chanbuf(c, c.recvx)
	if cas.elem != nil {
		typedmemmove(c.elemtype, cas.elem, qp)
	}
	typedmemclr(c.elemtype, qp)
	c.recvx++
	if c.recvx == c.dataqsiz {
		c.recvx = 0
	}
	c.qcount--
	selunlock(scases, lockorder)
	goto retc

bufsend:
	// can send to buffer
	if raceenabled {
		raceacquire(chanbuf(c, c.sendx))
		racerelease(chanbuf(c, c.sendx))
		raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
	}
	if msanenabled {
		msanread(cas.elem, c.elemtype.size)
	}
	typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem)
	c.sendx++
	if c.sendx == c.dataqsiz {
		c.sendx = 0
	}
	c.qcount++
	selunlock(scases, lockorder)
	goto retc

recv:
	// can receive from sleeping sender (sg)
	recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
	if debugSelect {
		print("syncrecv: sel=", sel, " c=", c, "\n")
	}
	if cas.receivedp != nil {
		*cas.receivedp = true
	}
	goto retc

rclose:
	// read at end of closed channel
	selunlock(scases, lockorder)
	if cas.receivedp != nil {
		*cas.receivedp = false
	}
	if cas.elem != nil {
		typedmemclr(c.elemtype, cas.elem)
	}
	if raceenabled {
		raceacquire(unsafe.Pointer(c))
	}
	goto retc

send:
	// can send to a sleeping receiver (sg)
	if raceenabled {
		raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
	}
	if msanenabled {
		msanread(cas.elem, c.elemtype.size)
	}
	send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
	if debugSelect {
		print("syncsend: sel=", sel, " c=", c, "\n")
	}
	goto retc

retc:
	if cas.releasetime > 0 {
		blockevent(cas.releasetime-t0, 1)
	}
	return casi

sclose:
	// send on closed channel
    // 向关闭 channel 发送数据
    // 直接 panic
	selunlock(scases, lockorder)
	panic(plainError("send on closed channel"))
}

在上述代码中具体做了些什么事呢?下面我们来分析分析。

case洗牌 -> case堆排去重 -> 所有channel 上锁 ->  遍历(洗牌后的)case找出第一个可以执行的case -> 如果没有就执行default -> 如果都没有就把当前G挂起到所有case 所对应的chan等待唤醒,同时解锁所有channel ->  被唤醒后再次对所有channel上锁 -> 最后一次循环操作,获取可执行case,其余全部出队列丢弃 -> 没有的话再次走 loop 逻辑

可以用一张图表示:(图参考自:https://blog.csdn.net/u011957758/article/details/82230316)

 

【我的架构师之路】- golang源码分析之select的底层实现_第1张图片

最后:

  1. select对所有涉及到的channel都加锁。
  2. 在对所有的channel枷锁之前,有一个对所有的channel做了一次堆排的动作,目的为了去重channel
  3. select并不是随机选择case去执行,而是事先将所有的case进行洗牌,然后再从头到尾去遍历,选择出第一个可以执行的case。
  4. 在for {} 结构中的 select 每一次for 都会经历上述的 4各阶段,创建 -> 注册 -> 执行 -> 释放;所以select的执行是有代价的而且代价不低。

你可能感兴趣的:(golang,源码)