C++编程之内存管理(再谈)

1.内存分配方式

常见的内存错误及其对策
C++中,内存分成 5 个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
  • 栈,在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
  • 堆,就是那些由 new 分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new 就要对应一个 delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
  • 自由存储区,就是那些由 malloc 等分配的内存块,他和堆是十分相似的,不过它是用 free 来结束自己的生命的。
  • 全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的 C 语言中,全局变量又分为初始化的和未初始化的,在 C++里面没有这个区分了,他们共同占用同一块内存区。
  • 常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改。 

2.栈和堆的区别

  • 管理方式不同;
  • 空间大小不同;
  • 能否产生碎片不同;
  • 生长方向不同;
  • 分配方式不同;
  • 分配效率不同;
管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生 memory leak。

空间大小:一般来讲在 32 位系统下,堆内存可以达到 4G 的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在 VC6 下面,默认的栈空间大小是1M(好像是,记不清楚了)。
当然,我们可以修改:
打开工程,依次操作菜单如下: Project->Setting->Link,在 Category 中选中 Output,然后在 Reserve
中设定堆栈的最大值和 commit。
注意: reserve 最小值为 4Byte; commit 是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。

碎片问题:对于堆来讲,频繁的 new/delete 势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。

生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。

分配方式:堆都是动态分配的,没有静态分配的堆。栈有 2 种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由 alloca 函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。

分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是 C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

从这里我们可以看到,堆和栈相比,由于大量 new/delete 的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP 和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生意想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候 debug 可是相当困难的:) 。

3.常见内存错误与对策

常见的内存错误及其对策如下:
* 内存分配未成功,却使用了它。
编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为 NULL。如果指针 p 是函数的参数,那么在函数的入口处用 assert(p!=NULL)进行检查。如果是用 malloc 或 new 来申请内存,应该用 if(p==NULL) 或 if(p!=NULL)进行防错处理。

* 内存分配虽然成功,但是尚未初始化就引用它。
犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。 内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

* 内存分配成功并且已经初始化,但操作越过了内存的边界。
例如在使用数组时经常发生下标“多 1”或者“少 1”的操作。特别是在 for 循环语句中,循环次数很容易搞错,导致数组操作越界。

* 忘记了释放内存,造成内存泄漏。
含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。动态内存的申请与释放必须配对,程序中 malloc 与 free 的使用次数一定要相同,否则肯定有错误( new/delete 同理)。

* 释放了内存却继续使用它。
有三种情况:
( 1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。
( 2)函数的 return 语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。
( 3)使用 free 或 delete 释放了内存后,没有将指针设置为 NULL。导致产生“野指针”。
 

【规则 1】用 malloc 或 new 申请内存之后,应该立即检查指针值是否为 NULL。防止使用指针值为 NULL的内存。
【规则 2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。
【规则 3】避免数组或指针的下标越界,特别要当心发生“多 1”或者“少 1”操作。

【规则 4】动态内存的申请与释放必须配对,防止内存泄漏。
【规则 5】用 free 或 delete 释放了内存之后,立即将指针设置为 NULL,防止产生“野指针”。
 

你可能感兴趣的:(C/C++)