复数(Complex)类及FFT的C++实现

===○专业造轮子===

因为一些原因需要额外编写傅里叶变换(Fourier Transform)的实现代码,

而傅里叶变换需要复数的支持,因此额外编写了一个复数类。


首先是复数(Complex)类的设计,很简单,数据域只有实部和虚部,为了方便外部操作,

将数据设置为公开访问,大致如下

classComplex

{

public:

    Complex();

    Complex(double re,double im);

    // operator +,-,*,/,= etc.

    double real;  // 实部

    double imag;  // 虚部

};


为了简便操作,Complex类重载了基本运算符。


接下来是傅里叶变换的实现。

为了提高效率,在实际应用中(离散形式的傅里叶变换,DFT)多采用快速算法即FFT

全称为Fast Fourier Transform

此处引用到复数类Complex,稍后详述。


FFT的具体实现如下

函数声明FFT()

#ifndef FOURIER_H
#define FOURIER_H

#include "Complex.h"

#ifndef CONST_PI
#define CONST_PI
const double PI = 3.14159265358979;
const double PI_X2 = 2 * PI;
#endif

/* r=log2(N) */
extern void FFT(Complex *TD, Complex*FD, int r);

#endif


函数实现FFT()
#include "Fourier.h"
#include 
#include 

/* r=log2(N) */
void FFT(Complex *TD, Complex*FD, int r)
{
	const int count = 1 << r;
	int csz = sizeof(Complex)*count;
	Complex* W = (Complex*)malloc(csz / 2);
	Complex* X1 = (Complex*)malloc(csz);
	Complex* X2 = (Complex*)malloc(csz);
	Complex* X = NULL;

	int  i, j, k;
	int  dist, p;
	double f = PI_X2 / count;
	double a = 0;
	for (i = 0; i < count / 2; ++i)
	{
		W[i] = Complex(cos(a), -sin(a));
		a += f;
	}

	for (i = 0; i < count; ++i)
	{
		X1[i] = TD[i];
	}

	for (k = 0; k < r; ++k)
	{
		for (j = 0; j < (1 << k); ++j)
		{
			dist = 1 << (r - k);
			for (i = 0; i < dist / 2; ++i)
			{
				p = j * dist;
				X2[i + p] = X1[i + p] + X1[i + p + dist / 2];
				X2[i + p + dist / 2] = (X1[i + p] - X1[i + p + dist / 2])* W[i * (1 << k)];
			}
		}
		X = X1;
		X1 = X2;
		X2 = X;
	}

	for (j = 0; j < count; ++j)
	{
		p = 0;
		for (i = 0; i < r; ++i)
		{
			if (j&(1 << i))
			{
				p += 1 << (r - i - 1);
			}
		}
		FD[j] = X1[p];
	}

	free(W);
	free(X1);
	free(X2);
}


复数类Complex的声明文件Complex.h

#ifndef COMPLEX_H
#define COMPLEX_H

#ifndef BOOLEAN_VAL
#define BOOLEAN_VAL
typedef int BOOL;
#define TRUE 1
#define FALSE 0
#endif

class Complex
{
public:
	Complex();
	Complex(double re, double im);

	Complex operator=(double v);
	Complex operator+(double v);
	Complex operator-(double v);
	Complex operator*(double v);
	Complex operator/(double v);
	Complex operator+=(double v);
	Complex operator-=(double v);
	Complex operator*=(double v);
	Complex operator/=(double v);

	Complex operator=(Complex c);
	Complex operator+(Complex c);
	Complex operator-(Complex c);
	Complex operator*(Complex c);
	Complex operator/(Complex c);
	Complex operator+=(Complex c);
	Complex operator-=(Complex c);
	Complex operator*=(Complex c);
	Complex operator/=(Complex c);

	BOOL operator==(Complex c);
	BOOL operator!=(Complex c);

	double real;
	double imag;
};

#endif


复数类Complex的实现文件Complex.cpp

#include "Complex.h"

Complex::Complex()
{
	real = 0;
	imag = 0;
}

Complex::Complex(double re, double im)
{
	real = re;
	imag = im;
}

Complex Complex::operator+(double v)
{
	return Complex(real + v, imag);
}

Complex Complex::operator-(double v)
{
	return Complex(real - v, imag);
}

Complex Complex::operator*(double v)
{
	return Complex(real*v, imag*v);
}

Complex Complex::operator/(double v)
{
	return Complex(real / v, imag / v);
}

Complex Complex::operator=(double v)
{
	real = v;
	imag = 0;
	return *this;
}

Complex Complex::operator+=(double v)
{
	real += v;
	return *this;
}

Complex Complex::operator-=(double v)
{
	real -= v;
	return *this;
}

Complex Complex::operator*=(double v)
{
	real *= v;
	imag *= v;
	return *this;
}

Complex Complex::operator/=(double v)
{
	real /= 2;
	imag /= 2;
	return *this;
}

Complex Complex::operator+(Complex c)
{
	return Complex(real + c.real, imag + c.imag);
}

Complex Complex::operator-(Complex c)
{
	return Complex(real - c.real, imag - c.imag);
}

Complex Complex::operator*(Complex c)
{
	double re = real*c.real - imag*c.imag;
	double im = real*c.imag + imag*c.real;
	return Complex(re, im);
}

Complex Complex::operator/(Complex c)
{
	double x = c.real;
	double y = c.imag;
	double f = x*x + y*y;
	double re = (real*x + imag*y) / f;
	double im = (imag*x - real*y) / f;
	return Complex(re, im);
}

Complex Complex::operator=(Complex c)
{
	real = c.real;
	imag = c.imag;
	return *this;
}

Complex Complex::operator+=(Complex c)
{
	real += c.real;
	imag += c.imag;
	return *this;
}

Complex Complex::operator-=(Complex c)
{
	real -= c.real;
	imag -= c.imag;
	return *this;
}

Complex Complex::operator*=(Complex c)
{
	double re = real*c.real - imag*c.imag;
	double im = real*c.imag + imag*c.real;
	real = re;
	imag = im;
	return *this;
}

Complex Complex::operator/=(Complex c)
{
	double x = c.real;
	double y = c.imag;
	double f = x*x + y*y;
	double re = (real*x + imag*y) / f;
	double im = (imag*x - real*y) / f;
	real = re;
	imag = im;
	return *this;
}

BOOL Complex::operator==(Complex c)
{
	return ((real == c.real) && (imag == c.imag));
}

BOOL Complex::operator!=(Complex c)
{
	return ((real != c.real) || (imag != c.imag));
}


在VS2013中编写测试程序,以16384个复数组成的数组为样本进行测试,从启动到输出结果远不足1秒,证明FFT效率较高。

以同样的数据在Matlab中进行测试,发现结果一致,由此证明以上算法代码基本无误(个人编辑代码可能会出现小的疏忽)。

复数(Complex)类及FFT的C++实现_第1张图片



本文原创,博文原始地址

http://blog.csdn.net/fengyhack/article/details/42780785

你可能感兴趣的:(C/C++,MFC)