HDU 4734 浅谈数位动态规划进阶

HDU 4734 浅谈数位动态规划进阶_第1张图片
世界真的很大
一下午就耗在这个数位DP上了
全怪原来讲的时候没有认真听。。
然后稍微研究了一下,比起上一道水题稍微有一点进阶了吧?
大概,,,
这道题涉及的是关乎于记忆化数组状态的设计,为了方便储存答案

看题先:

description:

题目给了个f(x)的定义:F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1,Ai是十进制数位,然后给出a,b求区间[0,b]内满足f(i)<=f(a)的i的个数。

input:

The first line has a number T (T <= 10000) , indicating the number of test cases. 
For each test case, there are two numbers A and B (0 <= A,B < 10 9)

output:

For every case,you should output " Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.

这道题算是略微的进阶了一点吧
f(a)是给出的,需要计算的就是小于b的满足f(i)小于等于f(a)的数的个数
由于基于f数组的定义就和数位有关,我们就考虑用数位dp来搜索答案
那么由于数位DP是从高位DP到低位的,而到了最后一位判断满不满足条件的关键就是通过按位搜索得到的f值小不小于f(a)
那么DFS需要保存的状态就是当前数位,有无限制,和前几位的f值

本来是没问题的,但是如果我们想要优化的话,就是考虑把memset放在多组数据的外面的话,就要求dp数组保存的一定是数自己的性质,而保存前几位的tot值,这显然根据每组数据b值的不同的答案是不同的

考虑想要把状态映射在数自己身上
那么如果当前的数位是pos,前几位的f值是sum。的时候,不管a值如何变化,怎样才能表示出后继状态呢?
DFS的本质是从前往后找,当记忆化之后,如果当前状态已经找过就直接返回,就是说,记忆化记录的其实是后几位的状态
而这道题是因为f值是从前几位推得的,所以没法作为”后几位“的状态来记忆化保存

考虑怎么把前几位的答案映射到后几位上去,当然就是保存后几位能得到的答案,就是后几位能凑出的数

f[i][j] 表示当前数位第i位,后i位凑出j的方案数
这就是后几位的答案,也就是数本身的答案了

可以memset外放优化

完整代码:

#include
#include
using namespace std;

int T,tot,a[20],f[20][5050];

int dfs(int pos,int ste,int lim)
{
    int ans=0;
    if(pos==-1) return ste<=tot;
    if(ste>tot) return 0; 
    if(!lim && f[pos][tot-ste]!=-1) return f[pos][tot-ste];
    int up= lim ? a[pos] : 9;
    for(int i=0;i<=up;i++)
        ans+=dfs(pos-1,ste+i*(1<<pos),lim && i==a[pos]);
    if(!lim) f[pos][tot-ste]=ans;
    return ans;
}

int F(int n)
{
    int cnt=0,bns=0,cns=1;
    while(n)
    {
        bns+=cns*(n%10);
        n/=10;
        cns*=2;
    }
    return bns;
}

int solve(int n)
{
    int cnt=0;
    memset(a,0,sizeof(a));
    while(n)
    {
        a[cnt++]=n%10;
        n/=10;
    }
    return dfs(cnt-1,0,1);
}

int main()
{
    scanf("%d",&T);
    memset(f,-1,sizeof(f));
    for(int e=1;e<=T;e++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        tot=F(a);
        printf("Case #%d: %d\n",e,solve(b));
    }
    return 0;
}
/*
Whoso pulleth out this sword from this stone and anvil is duly born King of all England
*/

嗯,就是这样

你可能感兴趣的:(数位DP,DP,BZOJ)