改写自 openssl-1.1.1的SHA1的C语言实现,高效,自动匹配处理器大小端
# define SHA_LBLOCK 16
# define SHA_CBLOCK (SHA_LBLOCK*4)/* SHA treats input data as a
* contiguous array of 32 bit wide
* big-endian values. */
typedef struct SHAstate_st {
unsigned int h0, h1, h2, h3, h4;
unsigned int Nl, Nh;
unsigned int data[SHA_LBLOCK];
unsigned int num;
} SHA_CTX;
#define INIT_DATA_h0 0x67452301UL
#define INIT_DATA_h1 0xefcdab89UL
#define INIT_DATA_h2 0x98badcfeUL
#define INIT_DATA_h3 0x10325476UL
#define INIT_DATA_h4 0xc3d2e1f0UL
#define K_00_19 0x5a827999UL
#define K_20_39 0x6ed9eba1UL
#define K_40_59 0x8f1bbcdcUL
#define K_60_79 0xca62c1d6UL
#define X(i) XX[i]
#define ROTATE(v, n) (((v) << (n)) | ((v) >> (32 - (n))))
#define Xupdate(a,ix,ia,ib,ic,id) ( (a)=(ia^ib^ic^id), \
ix=(a)=ROTATE((a),1) \
)
#define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
#define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
#define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
#define F_60_79(b,c,d) F_20_39(b,c,d)
#define BODY_00_15(i,a,b,c,d,e,f,xi) \
(f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
(b)=ROTATE((b),30);
#define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
Xupdate(f,xi,xa,xb,xc,xd); \
(f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
(b)=ROTATE((b),30);
#define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
Xupdate(f,xi,xa,xb,xc,xd); \
(f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
(b)=ROTATE((b),30);
#define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
Xupdate(f,xa,xa,xb,xc,xd); \
(f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
(b)=ROTATE((b),30);
#define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
Xupdate(f,xa,xa,xb,xc,xd); \
(f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
(b)=ROTATE((b),30);
#define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
Xupdate(f,xa,xa,xb,xc,xd); \
(f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
(b)=ROTATE((b),30);
# define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
l|=(((unsigned long)(*((c)++)))<<16), \
l|=(((unsigned long)(*((c)++)))<< 8), \
l|=(((unsigned long)(*((c)++))) ) )
# define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
*((c)++)=(unsigned char)(((l)>>16)&0xff), \
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \
*((c)++)=(unsigned char)(((l) )&0xff), \
l)
#define HASH_MAKE_STRING(c,s) do { \
unsigned long ll; \
ll=(c)->h0; (void)HOST_l2c(ll,(s)); \
ll=(c)->h1; (void)HOST_l2c(ll,(s)); \
ll=(c)->h2; (void)HOST_l2c(ll,(s)); \
ll=(c)->h3; (void)HOST_l2c(ll,(s)); \
ll=(c)->h4; (void)HOST_l2c(ll,(s)); \
} while (0)
static void HASH_BLOCK_DATA_ORDER(SHA_CTX *c, const void *p, size_t num)
{
const unsigned char *data = (unsigned char *)p;
register unsigned int A, B, C, D, E, T, l;
unsigned int XX[16];
A = c->h0;
B = c->h1;
C = c->h2;
D = c->h3;
E = c->h4;
for (;;) {
const union {
long one;
char little;
} is_endian = {
1
};
if (!is_endian.little && ((size_t)p % 4) == 0) {
const unsigned int *W = (const unsigned int *)data;
X(0) = W[0];
X(1) = W[1];
BODY_00_15(0, A, B, C, D, E, T, X(0));
X(2) = W[2];
BODY_00_15(1, T, A, B, C, D, E, X(1));
X(3) = W[3];
BODY_00_15(2, E, T, A, B, C, D, X(2));
X(4) = W[4];
BODY_00_15(3, D, E, T, A, B, C, X(3));
X(5) = W[5];
BODY_00_15(4, C, D, E, T, A, B, X(4));
X(6) = W[6];
BODY_00_15(5, B, C, D, E, T, A, X(5));
X(7) = W[7];
BODY_00_15(6, A, B, C, D, E, T, X(6));
X(8) = W[8];
BODY_00_15(7, T, A, B, C, D, E, X(7));
X(9) = W[9];
BODY_00_15(8, E, T, A, B, C, D, X(8));
X(10) = W[10];
BODY_00_15(9, D, E, T, A, B, C, X(9));
X(11) = W[11];
BODY_00_15(10, C, D, E, T, A, B, X(10));
X(12) = W[12];
BODY_00_15(11, B, C, D, E, T, A, X(11));
X(13) = W[13];
BODY_00_15(12, A, B, C, D, E, T, X(12));
X(14) = W[14];
BODY_00_15(13, T, A, B, C, D, E, X(13));
X(15) = W[15];
BODY_00_15(14, E, T, A, B, C, D, X(14));
BODY_00_15(15, D, E, T, A, B, C, X(15));
data += SHA_CBLOCK;
} else {
(void)HOST_c2l(data, l);
X(0) = l;
(void)HOST_c2l(data, l);
X(1) = l;
BODY_00_15(0, A, B, C, D, E, T, X(0));
(void)HOST_c2l(data, l);
X(2) = l;
BODY_00_15(1, T, A, B, C, D, E, X(1));
(void)HOST_c2l(data, l);
X(3) = l;
BODY_00_15(2, E, T, A, B, C, D, X(2));
(void)HOST_c2l(data, l);
X(4) = l;
BODY_00_15(3, D, E, T, A, B, C, X(3));
(void)HOST_c2l(data, l);
X(5) = l;
BODY_00_15(4, C, D, E, T, A, B, X(4));
(void)HOST_c2l(data, l);
X(6) = l;
BODY_00_15(5, B, C, D, E, T, A, X(5));
(void)HOST_c2l(data, l);
X(7) = l;
BODY_00_15(6, A, B, C, D, E, T, X(6));
(void)HOST_c2l(data, l);
X(8) = l;
BODY_00_15(7, T, A, B, C, D, E, X(7));
(void)HOST_c2l(data, l);
X(9) = l;
BODY_00_15(8, E, T, A, B, C, D, X(8));
(void)HOST_c2l(data, l);
X(10) = l;
BODY_00_15(9, D, E, T, A, B, C, X(9));
(void)HOST_c2l(data, l);
X(11) = l;
BODY_00_15(10, C, D, E, T, A, B, X(10));
(void)HOST_c2l(data, l);
X(12) = l;
BODY_00_15(11, B, C, D, E, T, A, X(11));
(void)HOST_c2l(data, l);
X(13) = l;
BODY_00_15(12, A, B, C, D, E, T, X(12));
(void)HOST_c2l(data, l);
X(14) = l;
BODY_00_15(13, T, A, B, C, D, E, X(13));
(void)HOST_c2l(data, l);
X(15) = l;
BODY_00_15(14, E, T, A, B, C, D, X(14));
BODY_00_15(15, D, E, T, A, B, C, X(15));
}
BODY_16_19(16, C, D, E, T, A, B, X(0), X(0), X(2), X(8), X(13));
BODY_16_19(17, B, C, D, E, T, A, X(1), X(1), X(3), X(9), X(14));
BODY_16_19(18, A, B, C, D, E, T, X(2), X(2), X(4), X(10), X(15));
BODY_16_19(19, T, A, B, C, D, E, X(3), X(3), X(5), X(11), X(0));
BODY_20_31(20, E, T, A, B, C, D, X(4), X(4), X(6), X(12), X(1));
BODY_20_31(21, D, E, T, A, B, C, X(5), X(5), X(7), X(13), X(2));
BODY_20_31(22, C, D, E, T, A, B, X(6), X(6), X(8), X(14), X(3));
BODY_20_31(23, B, C, D, E, T, A, X(7), X(7), X(9), X(15), X(4));
BODY_20_31(24, A, B, C, D, E, T, X(8), X(8), X(10), X(0), X(5));
BODY_20_31(25, T, A, B, C, D, E, X(9), X(9), X(11), X(1), X(6));
BODY_20_31(26, E, T, A, B, C, D, X(10), X(10), X(12), X(2), X(7));
BODY_20_31(27, D, E, T, A, B, C, X(11), X(11), X(13), X(3), X(8));
BODY_20_31(28, C, D, E, T, A, B, X(12), X(12), X(14), X(4), X(9));
BODY_20_31(29, B, C, D, E, T, A, X(13), X(13), X(15), X(5), X(10));
BODY_20_31(30, A, B, C, D, E, T, X(14), X(14), X(0), X(6), X(11));
BODY_20_31(31, T, A, B, C, D, E, X(15), X(15), X(1), X(7), X(12));
BODY_32_39(32, E, T, A, B, C, D, X(0), X(2), X(8), X(13));
BODY_32_39(33, D, E, T, A, B, C, X(1), X(3), X(9), X(14));
BODY_32_39(34, C, D, E, T, A, B, X(2), X(4), X(10), X(15));
BODY_32_39(35, B, C, D, E, T, A, X(3), X(5), X(11), X(0));
BODY_32_39(36, A, B, C, D, E, T, X(4), X(6), X(12), X(1));
BODY_32_39(37, T, A, B, C, D, E, X(5), X(7), X(13), X(2));
BODY_32_39(38, E, T, A, B, C, D, X(6), X(8), X(14), X(3));
BODY_32_39(39, D, E, T, A, B, C, X(7), X(9), X(15), X(4));
BODY_40_59(40, C, D, E, T, A, B, X(8), X(10), X(0), X(5));
BODY_40_59(41, B, C, D, E, T, A, X(9), X(11), X(1), X(6));
BODY_40_59(42, A, B, C, D, E, T, X(10), X(12), X(2), X(7));
BODY_40_59(43, T, A, B, C, D, E, X(11), X(13), X(3), X(8));
BODY_40_59(44, E, T, A, B, C, D, X(12), X(14), X(4), X(9));
BODY_40_59(45, D, E, T, A, B, C, X(13), X(15), X(5), X(10));
BODY_40_59(46, C, D, E, T, A, B, X(14), X(0), X(6), X(11));
BODY_40_59(47, B, C, D, E, T, A, X(15), X(1), X(7), X(12));
BODY_40_59(48, A, B, C, D, E, T, X(0), X(2), X(8), X(13));
BODY_40_59(49, T, A, B, C, D, E, X(1), X(3), X(9), X(14));
BODY_40_59(50, E, T, A, B, C, D, X(2), X(4), X(10), X(15));
BODY_40_59(51, D, E, T, A, B, C, X(3), X(5), X(11), X(0));
BODY_40_59(52, C, D, E, T, A, B, X(4), X(6), X(12), X(1));
BODY_40_59(53, B, C, D, E, T, A, X(5), X(7), X(13), X(2));
BODY_40_59(54, A, B, C, D, E, T, X(6), X(8), X(14), X(3));
BODY_40_59(55, T, A, B, C, D, E, X(7), X(9), X(15), X(4));
BODY_40_59(56, E, T, A, B, C, D, X(8), X(10), X(0), X(5));
BODY_40_59(57, D, E, T, A, B, C, X(9), X(11), X(1), X(6));
BODY_40_59(58, C, D, E, T, A, B, X(10), X(12), X(2), X(7));
BODY_40_59(59, B, C, D, E, T, A, X(11), X(13), X(3), X(8));
BODY_60_79(60, A, B, C, D, E, T, X(12), X(14), X(4), X(9));
BODY_60_79(61, T, A, B, C, D, E, X(13), X(15), X(5), X(10));
BODY_60_79(62, E, T, A, B, C, D, X(14), X(0), X(6), X(11));
BODY_60_79(63, D, E, T, A, B, C, X(15), X(1), X(7), X(12));
BODY_60_79(64, C, D, E, T, A, B, X(0), X(2), X(8), X(13));
BODY_60_79(65, B, C, D, E, T, A, X(1), X(3), X(9), X(14));
BODY_60_79(66, A, B, C, D, E, T, X(2), X(4), X(10), X(15));
BODY_60_79(67, T, A, B, C, D, E, X(3), X(5), X(11), X(0));
BODY_60_79(68, E, T, A, B, C, D, X(4), X(6), X(12), X(1));
BODY_60_79(69, D, E, T, A, B, C, X(5), X(7), X(13), X(2));
BODY_60_79(70, C, D, E, T, A, B, X(6), X(8), X(14), X(3));
BODY_60_79(71, B, C, D, E, T, A, X(7), X(9), X(15), X(4));
BODY_60_79(72, A, B, C, D, E, T, X(8), X(10), X(0), X(5));
BODY_60_79(73, T, A, B, C, D, E, X(9), X(11), X(1), X(6));
BODY_60_79(74, E, T, A, B, C, D, X(10), X(12), X(2), X(7));
BODY_60_79(75, D, E, T, A, B, C, X(11), X(13), X(3), X(8));
BODY_60_79(76, C, D, E, T, A, B, X(12), X(14), X(4), X(9));
BODY_60_79(77, B, C, D, E, T, A, X(13), X(15), X(5), X(10));
BODY_60_79(78, A, B, C, D, E, T, X(14), X(0), X(6), X(11));
BODY_60_79(79, T, A, B, C, D, E, X(15), X(1), X(7), X(12));
c->h0 = (c->h0 + E) & 0xffffffffL;
c->h1 = (c->h1 + T) & 0xffffffffL;
c->h2 = (c->h2 + A) & 0xffffffffL;
c->h3 = (c->h3 + B) & 0xffffffffL;
c->h4 = (c->h4 + C) & 0xffffffffL;
if (--num == 0)
break;
A = c->h0;
B = c->h1;
C = c->h2;
D = c->h3;
E = c->h4;
}
}
static int SHA1_Init(SHA_CTX *c)
{
memset(c, 0, sizeof(*c));
c->h0 = INIT_DATA_h0;
c->h1 = INIT_DATA_h1;
c->h2 = INIT_DATA_h2;
c->h3 = INIT_DATA_h3;
c->h4 = INIT_DATA_h4;
return 1;
}
static int SHA1_Update(SHA_CTX *c, const void *data_, size_t len)
{
const unsigned char *data = (unsigned char *)data_;
unsigned char *p;
unsigned int l;
size_t n;
if (len == 0)
return 1;
l = (c->Nl + (((unsigned int) len) << 3)) & 0xffffffffUL;
if (l < c->Nl) /* overflow */
c->Nh++;
c->Nh += (unsigned int) (len >> 29); /* might cause compiler warning on
* 16-bit */
c->Nl = l;
n = c->num;
if (n != 0) {
p = (unsigned char *)c->data;
if (len >= SHA_CBLOCK || len + n >= SHA_CBLOCK) {
memcpy(p + n, data, SHA_CBLOCK - n);
HASH_BLOCK_DATA_ORDER(c, p, 1);
n = SHA_CBLOCK - n;
data += n;
len -= n;
c->num = 0;
/*
* We use memset rather than OPENSSL_cleanse() here deliberately.
* Using OPENSSL_cleanse() here could be a performance issue. It
* will get properly cleansed on finalisation so this isn't a
* security problem.
*/
memset(p, 0, SHA_CBLOCK); /* keep it zeroed */
} else {
memcpy(p + n, data, len);
c->num += (unsigned int)len;
return 1;
}
}
n = len / SHA_CBLOCK;
if (n > 0) {
HASH_BLOCK_DATA_ORDER(c, data, n);
n *= SHA_CBLOCK;
data += n;
len -= n;
}
if (len != 0) {
p = (unsigned char *)c->data;
c->num = (unsigned int)len;
memcpy(p, data, len);
}
return 1;
}
static int SHA1_Final(unsigned char *md, SHA_CTX *c)
{
unsigned char *p = (unsigned char *)c->data;
size_t n = c->num;
p[n] = 0x80; /* there is always room for one */
n++;
if (n > (SHA_CBLOCK - 8)) {
memset(p + n, 0, SHA_CBLOCK - n);
n = 0;
HASH_BLOCK_DATA_ORDER(c, p, 1);
}
memset(p + n, 0, SHA_CBLOCK - 8 - n);
p += SHA_CBLOCK - 8;
(void)HOST_l2c(c->Nh, p);
(void)HOST_l2c(c->Nl, p);
p -= SHA_CBLOCK;
HASH_BLOCK_DATA_ORDER(c, p, 1);
c->num = 0;
memset(p, 0, SHA_CBLOCK);
HASH_MAKE_STRING(c, md);
return 1;
}
/*!
@brief 求内存块BUFFER的SHA1值
@return unsigned char* 返回的的结果
@param[in] buf 求SHA1的内存BUFFER指针
@param[in] size BUFFER长度
@param[out] result 结果
*/
void SHA1(const unsigned char *msg, size_t size, unsigned char result[20])
{
SHA_CTX c;
SHA1_Init(&c);
SHA1_Update(&c, msg, size);
SHA1_Final(result, &c);
memset(&c, 0, sizeof(c));
}