Paddle:手写字符总结篇

数据集的预处理

## 数据的生成器
# 加载相关库
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image

import gzip
import json

# 定义数据集读取器
def load_data(mode='train'):

    # 读取数据文件
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    # 读取数据集中的训练集,验证集和测试集
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28
    # 根据输入mode参数决定使用训练集,验证集还是测试
    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]
    # 获得所有图像的数量
    imgs_length = len(imgs)
    # 验证图像数量和标签数量是否一致
    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))

    index_list = list(range(imgs_length))

  
    # 定义数据生成器
    def data_generator():
        # 训练模式下,打乱训练数据
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        # 按照索引读取数据
        for i in index_list:
            # 读取图像和标签,转换其尺寸和类型
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')
            imgs_list.append(img) 
            labels_list.append(label)
            # 如果当前数据缓存达到了batch size,就返回一个批次数据
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据缓存列表
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator

模型的建立

正向传播后,将正确率也计算出来:

# 定义模型结构
class MNIST(fluid.dygraph.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         
         # 定义一个卷积层,使用relu激活函数
         self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义一个池化层,池化核为2,步长为2,使用最大池化方式
         self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
         # 定义一个卷积层,使用relu激活函数
         self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
         # 定义一个池化层,池化核为2,步长为2,使用最大池化方式
         self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
         # 定义一个全连接层,输出节点数为10 
         self.fc = Linear(input_dim=980, output_dim=10, act='softmax')
    # 定义网络的前向计算过程,把标签也传进去,用于计算正确率
     def forward(self, inputs,label):
         x = self.conv1(inputs)
         x = self.pool1(x)
         x = self.conv2(x)
         x = self.pool2(x)
         x = fluid.layers.reshape(x, [x.shape[0], 980])
         x = self.fc(x)
         if label is not None:
             acc = fluid.layers.accuracy(input=x, label=label)
             return x, acc
         else:
             return x

模型的训练

使用 GPU 进行训练

> 	use_gpu = True 	
>  place = fluid.CUDAPlace(0) if use_gpu else
> 	fluid.CPUPlace() 
> 	with fluid.dygraph.guard(place):

使用动态学习率并添加正则操作

  ## 这里使用动态学习率,学习率根据训练步骤,从 0.01 衰减到 0.001 的过程  
  #计算变化的次数
  total_steps = (int(60000//BATCHSIZE) + 1) * EPOCH_NUM
  ## 学习率以多项曲线从 0.01 衰减到 0.001
  lr = fluid.dygraph.PolynomialDecay(0.01, total_steps, 0.001)
  # 定义Adma优化器
  optimizer = fluid.optimizer.AdamOptimizer(learning_rate=lr, regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1)

模型的保存

  # 保存模型参数和优化器的参数
  fluid.save_dygraph(model.state_dict(), './checkpoint/mnist_epoch{}'.format(epoch_id))
  fluid.save_dygraph(optimizer.state_dict(), './checkpoint/mnist_epoch{}'.format(epoch_id))

模型的恢复

 params_dict, opt_dict = fluid.load_dygraph(params_path)
 # 恢复模型参数
 model = MNIST("mnist")
 model.load_dict(params_dict)

 # 恢复优化器参数
 optimizer = fluid.optimizer.AdamOptimizer(learning_rate=lr, parameter_list=model.parameters())
 optimizer.set_dict(opt_dict)

模型训练代码总结

## 使用GPU进行模型的训练
#调用加载数据的函数
train_loader = load_data('train')
    
#在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = True
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
BATCHSIZE = 100

with fluid.dygraph.guard(place):
    model = MNIST()
    model.train() 
    ## 这里使用动态学习率,学习率根据训练步骤,从 0.01 衰减到 0.001 的过程  
    #计算变化的次数
    total_steps = (int(60000//BATCHSIZE) + 1) * EPOCH_NUM
    ## 学习率以多项曲线从 0.01 衰减到 0.001
    lr = fluid.dygraph.PolynomialDecay(0.01, total_steps, 0.001)


    #四种优化算法的设置方案,可以逐一尝试效果
    # optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    # optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.01, momentum=0.9, parameter_list=model.parameters())
    # optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    # optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    
    # 可以在优化算法的基础上添加正则项,用于减少过拟合,参数regularization_coeff调节正则化项的权重
    # optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1),parameter_list=model.parameters()))
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=lr, regularization=fluid.regularizer.L2Decay(regularization_coeff=0.1),
                                              parameter_list=model.parameters())


    EPOCH_NUM = 5
    iter=0
    iters=[]
    losses=[]
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程,同时拿到模型输出值和分类准确率
            # 直接传入即可,无需修改one-hot编码
            predict, acc = model(image, label)
            avg_acc = fluid.layers.mean(acc)

            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(), avg_acc.numpy()))
                iters.append(iter)
                losses.append(avg_loss.numpy())
                iter = iter + 100
            #后向传播,更新参数的过程
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

    # 保存模型参数和优化器的参数
    fluid.save_dygraph(model.state_dict(), './checkpoint/mnist_epoch{}'.format(epoch_id))
    fluid.save_dygraph(optimizer.state_dict(), './checkpoint/mnist_epoch{}'.format(epoch_id))    

结果:
Paddle:手写字符总结篇_第1张图片

模型的可视化

import matplotlib.pyplot as plt
%matplotlib inline
### 可视化
#画出训练过程中Loss的变化曲线
plt.figure()
plt.title("train loss", fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("loss", fontsize=14)
plt.plot(iters, losses,color='red',label='train loss') 
plt.grid()
plt.show()

Paddle:手写字符总结篇_第2张图片

模型的测试

对模型进行测试

只需换掉数据集,然后传入model就可以得到正确率了

### 对模型进行测试
with fluid.dygraph.guard(place):
    print('start evaluation .......')
    #加载模型参数
    model = MNIST()
    model_state_dict, _ = fluid.load_dygraph('mnist')
    model.load_dict(model_state_dict)

    model.eval()
    eval_loader = load_data('eval')

    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(eval_loader()):
        x_data, y_data = data
        img = fluid.dygraph.to_variable(x_data)
        label = fluid.dygraph.to_variable(y_data)
        
        prediction, acc = model(img, label)
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_loss = fluid.layers.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))
    
    #计算多个batch的平均损失和准确率
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
    

结果:
Paddle:手写字符总结篇_第3张图片

模型的恢复

使用 params_dict, opt_dict = fluid.load_dygraph(params_path) 进行模型的加载
使用 model.load_dict(model_state_dict)optimizer.set_dict(opt_dict) 进行模型的测试。

# 恢复训练,即接着上面的模型进行训练
params_path = "./checkpoint/mnist_epoch0"        
#在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = True
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()

with fluid.dygraph.guard(place):
    # 加载模型参数到模型中
    params_dict, opt_dict = fluid.load_dygraph(params_path)
    model = MNIST("mnist")
    #加载原来的模型参数
    model.load_dict(params_dict)
    
    EPOCH_NUM = 5
    BATCH_SIZE = 100
    # 定义学习率,并加载优化器参数到模型中
    total_steps = (int(60000//BATCH_SIZE) + 1) * EPOCH_NUM
    lr = fluid.dygraph.PolynomialDecay(0.01, total_steps, 0.001)
    
    # 使用Adam优化器
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=lr, parameter_list=model.parameters())
    #加载原来的优化器参数
    optimizer.set_dict(opt_dict)

    for epoch_id in range(1, EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据,变得更加简洁
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程,同时拿到模型输出值和分类准确率
            predict, acc = model(image, label)
            avg_acc = fluid.layers.mean(acc)
            
            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(),avg_acc.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

你可能感兴趣的:(Paddle)