【数据结构与算法】 哈夫曼树——哈夫曼编码的一个实例

哈夫曼树和哈夫曼编码


哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。 在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称“熵编码法”),用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。这种方法是由David.A.Huffman发展起来的。 

树的带权路径长度记为

WPL= (W1*L1+W2*L2+W3*L3+...+Wn*Ln)

,N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。可以证明哈夫曼树的WPL是最小的。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

哈夫曼编码步骤:

一、对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F= {T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算 法,一般还要求以Ti的权值Wi的升序排列。)
二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
四、重复二和三两步,直到集合F中只有一棵二叉树为止。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

简易的理解就是,假如我有A,B,C,D,E五个字符,出现的频率(即权值)分别为5,4,3,2,1,那么我们第一步先取两个最小权值作为左右子树构造一个新树,即取1,2构成新树,其结点为1+2=3,如图:

12

虚线为新生成的结点,第二步再把新生成的权值为3的新树升序方式放到剩下的集合中。1、2两棵树删除,所以集合变成{5,4,3,3},再根据第二步,取最小的两个权值构成新树,如图:

13

集合变成{6,5,4}。再依次建立哈夫曼树,取4和5,再取6和9,如下图:

14

其中各个权值替换对应的字符即为下图:

15

左子树0 右子树1.ABCDE一定是叶子结点,所对应的哈弗曼编码就是从根节点“读”下来。 所以各字符对应的编码为:A->11,B->10,C->00,D->011,E->010

哈夫曼编码是一种无前缀编码。解码时不会混淆。其主要应用在数据压缩,加密解密等场合。

说到这里我要插一句:

A,B,C,D,E五个字符,由于计算机只能识别0,1,所以可以用 0 1 10 11 100 来表示,然而仅仅这样是不行的,并不能区分。

----我来举个例子说明为什么不能区分:随便写一段:111001011. 解码可能就成为AAABBABAA。仔细想想应该就懂了。

所以,若要区分,可以使用定长操作码,就是每条需要3位(ABCDE则对应000,001,010,011,100)。每个字符都需要3位这无疑是一种浪费(2^3=8,3位可以表示8种数据 ,还有3条没有作用),如何进行优化呢?便有了哈夫曼编码。

还是这道题,我们用数字对比一下哈夫曼编码的作用。

上面算出来的结果是:ABCDE分别对应11,10,00,011,010.这是可以区分的。

----我同样来举个例子说明为什么能区分:随便写一段:111001011。解码就是:ABEA。这是必然的。

所以,我们不需要用每条3位去编码了,我们来计算一下节省了多少位。

假如ABCDE是共有1000条指令,根据他们的权值(5,4,3,2,1)计算他们的频率为(5/15,4/15,3/15,2/15,1/15)。

计算得在这1000条中, A大约有333条,B大约有266条,C大约有200条,D大约有133条,E大约有66条。(血崩!!我为什么不找个好计算一点的例子)

而上面刚求出的ABCDE所占位数分别为(2,2,2,3,3),计算总位数为2*333+2*266+2*200+3*133+3*66=2195 

看见了吧! 2195<3000(3*1000) 效果还是很明显滴~


C语言代码实现(代码来源于网络):

/*-------------------------------------------------------------------------
 * Name:   哈夫曼编码源代码。
 * Date:   2011.04.16
 * Author: Jeffrey Hill+Jezze(解码部分)
 * 在 Win-TC 下测试通过
 * 实现过程:着先通过 HuffmanTree() 函数构造哈夫曼树,然后在主函数 main()中
 *           自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在
 *           父结点左侧,则置码为 0,若在右侧,则置码为 1。最后输出生成的编码。
 *------------------------------------------------------------------------*/
#include 
#include
 
#define MAXBIT      100
#define MAXVALUE  10000
#define MAXLEAF     30
#define MAXNODE    MAXLEAF*2 -1
 
typedef struct 
{
    int bit[MAXBIT];
    int start;
} HCodeType;        /* 编码结构体 */
typedef struct
{
    int weight;
    int parent;
    int lchild;
    int rchild;
    int value;
} HNodeType;        /* 结点结构体 */
 
/* 构造一颗哈夫曼树 */
void HuffmanTree (HNodeType HuffNode[MAXNODE],  int n)
{ 
    /* i、j: 循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,
        x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/
    int i, j, m1, m2, x1, x2;
    /* 初始化存放哈夫曼树数组 HuffNode[] 中的结点 */
    for (i=0; i<2*n-1; i++)
    {
        HuffNode[i].weight = 0;//权值 
        HuffNode[i].parent =-1;
        HuffNode[i].lchild =-1;
        HuffNode[i].rchild =-1;
        HuffNode[i].value=i; //实际值,可根据情况替换为字母  
    } /* end for */
 
    /* 输入 n 个叶子结点的权值 */
    for (i=0; i 
    
    {
        printf ("Please input weight of leaf node %d: \n", i);
        scanf ("%d", &HuffNode[i].weight);
    } /* end for */
 
    /* 循环构造 Huffman 树 */
    for (i=0; i 
    
    {
        m1=m2=MAXVALUE;     /* m1、m2中存放两个无父结点且结点权值最小的两个结点 */
        x1=x2=0;
        /* 找出所有结点中权值最小、无父结点的两个结点,并合并之为一颗二叉树 */
        for (j=0; j 
    
        {
            if (HuffNode[j].weight < m1 && HuffNode[j].parent==-1)
            {
                m2=m1; 
                x2=x1; 
                m1=HuffNode[j].weight;
                x1=j;
            }
            else if (HuffNode[j].weight < m2 && HuffNode[j].parent==-1)
            {
                m2=HuffNode[j].weight;
                x2=j;
            }
        } /* end for */
            /* 设置找到的两个子结点 x1、x2 的父结点信息 */
        HuffNode[x1].parent  = n+i;
        HuffNode[x2].parent  = n+i;
        HuffNode[n+i].weight = HuffNode[x1].weight + HuffNode[x2].weight;
        HuffNode[n+i].lchild = x1;
        HuffNode[n+i].rchild = x2;
 
        printf ("x1.weight and x2.weight in round %d: %d, %d\n", i+1, HuffNode[x1].weight, HuffNode[x2].weight);  /* 用于测试 */
        printf ("\n");
    } /* end for */
  /*  for(i=0;i
    {
        printf(" Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d\n",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
                  }*///测试 
} /* end HuffmanTree */
 
//解码 
void decodeing(char string[],HNodeType Buf[],int Num)
{
  int i,tmp=0,code[1024];
  int m=2*Num-1;
  char *nump;
  char num[1024];
  for(i=0;istring);i++)
  {
   if(string[i]=='0')
  num[i]=0;        
  else
  num[i]=1;                    
  } 
  i=0;
  nump=&num[0];
  
 while(nump<(&num[strlen(string)]))
 {tmp=m-1;
  while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))
  {
  
   if(*nump==0)
   {
     tmp=Buf[tmp].lchild ;          
   } 
   else tmp=Buf[tmp].rchild;
   nump++;
        
  } 
  
  printf("%d",Buf[tmp].value);                                  
 }
 
  
}
 
 
int main(void)
{
    
    HNodeType HuffNode[MAXNODE];            /* 定义一个结点结构体数组 */
    HCodeType HuffCode[MAXLEAF],  cd;       /* 定义一个编码结构体数组, 同时定义一个临时变量来存放求解编码时的信息 */
    int i, j, c, p, n;
    char pp[100];
    printf ("Please input n:\n");
    scanf ("%d", &n);
    HuffmanTree (HuffNode, n);
   
    
    for (i=0; i < n; i++)
    {
        cd.start = n-1;
        c = i;
        p = HuffNode[c].parent;
        while (p != -1)   /* 父结点存在 */
        {
            if (HuffNode[p].lchild == c)
                cd.bit[cd.start] = 0;
            else
                cd.bit[cd.start] = 1;
            cd.start--;        /* 求编码的低一位 */
            c=p;                    
            p=HuffNode[c].parent;    /* 设置下一循环条件 */
        } /* end while */
        
        /* 保存求出的每个叶结点的哈夫曼编码和编码的起始位 */
        for (j=cd.start+1; j 
    
        { HuffCode[i].bit[j] = cd.bit[j];}
        HuffCode[i].start = cd.start;
    } /* end for */
    
    /* 输出已保存好的所有存在编码的哈夫曼编码 */
    for (i=0; i 
    
    {
        printf ("%d 's Huffman code is: ", i);
        for (j=HuffCode[i].start+1; j < n; j++)
        {
            printf ("%d", HuffCode[i].bit[j]);
        }
        printf(" start:%d",HuffCode[i].start);
       
        printf ("\n");
        
    }
/*    for(i=0;i
    for(j=0;j
        {
             printf ("%d", HuffCode[i].bit[j]);           
        }
        printf("\n");
        }*/
    printf("Decoding?Please Enter code:\n");
    scanf("%s",&pp);
decodeing(pp,HuffNode,n);
    getch();
    return 0;
}

图片案例  转载自:http://www.cnblogs.com/Jezze/archive/2011/12/23/2299884.html



你可能感兴趣的:(数据结构与算法,c语言,哈夫曼编码,数据结构)