leetcode *378. 有序矩阵中第K小的元素

【题目】*378. 有序矩阵中第K小的元素

给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
请注意,它是排序后的第 k 小元素,而不是第 k 个不同的元素。

示例:

matrix = [
   [ 1,  5,  9],
   [10, 11, 13],
   [12, 13, 15]
],
k = 8,
返回 13。

提示:
你可以假设 k 的值永远是有效的,1 ≤ k ≤ n2 。

【解题思路1】暴力法

转化为一维数组,排序后返回下标 k-1 的元素

class Solution {
    public int kthSmallest(int[][] matrix, int k) {
        int len = matrix.length;
        int[] temp = new int[len * len];
        int index = 0;
        for (int[] arr : matrix) {
            for (int a : arr) {
                temp[index++] = a;
            }
        }
        Arrays.sort(temp);
        return temp[k - 1];
    }
}

【解题思路2】归并排序(待研究)

这个矩阵的每一行均为一个有序数组。问题即转化为从这 n 个有序数组中找第 k 小的数,可以想到利用归并排序的做法,归并到第 k 个数即可停止。
一般归并排序是两个数组归并,而本题是 n 个数组归并,所以需要用小根堆维护,以优化时间复杂度,归并方式参考 23. 合并K个排序链表

class Solution {
    public int kthSmallest(int[][] matrix, int k) {
        PriorityQueue<int[]> pq = new PriorityQueue<int[]>(new Comparator<int[]>() {
            public int compare(int[] a, int[] b) {
                return a[0] - b[0];
            }
        });
        int n = matrix.length;
        for (int i = 0; i < n; i++) {
            pq.offer(new int[]{matrix[i][0], i, 0});
        }
        for (int i = 0; i < k - 1; i++) {
            int[] now = pq.poll();
            if (now[2] != n - 1) {
                pq.offer(new int[]{matrix[now[1]][now[2] + 1], now[1], now[2] + 1});
            }
        }
        return pq.poll()[0];
    }
}

【解题思路3】二分法

起点也就是初始位置在 matrix[n - 1][0](即左下角)
设当前位置为 matrix[i][j],若 matrix[i][j]≤mid,则将当前所在列的不大于 mid 的数的数量有i + 1个累加到答案中,并向右移动,否则向上移动;不断移动直到走出格子为止,最终会走出一条从左下角到右上角的锯齿分界线。
下面的例图取mid=8得到的分界线
leetcode *378. 有序矩阵中第K小的元素_第1张图片
这样二分就可以线性计算对于任意一个 mid,矩阵中有多少数不小于它。

不妨假设我们要求解的第k小元素为 x,那么可以知道 left ≤ x ≤ right,初始上下界是左上角和右下角也就是最小和最大的两个数。
每次对于「猜测」的答案 mid,计算矩阵中有多少数 <= mid :

  • 如果数量 >= k,那么说明 x <= mid;
  • 如果数量 < k,那么说明 x > mid。
class Solution {
    public int kthSmallest(int[][] matrix, int k) {
        int n = matrix.length;
        int left = matrix[0][0];
        int right = matrix[n - 1][n - 1];
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (check(matrix, mid, k, n)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }

    //判断 <= mid 的元素个数是否 >= k 个
    public boolean check(int[][] matrix, int mid, int k, int n) {
        int i = n - 1;
        int j = 0;
        int count = 0;
        while (i >= 0 && j < n) {
            if (matrix[i][j] <= mid) {
                count += i + 1;
                j++;
            } else {
                i--;
            }
        }
        return count >= k;
    }
}

你可能感兴趣的:(Leetcode,/,Online,Judge,#,二分法,#,数组,leetcode,二分法)