1049 数列的片段和 (20分)

给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。

给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。

输入格式:

输入第一行给出一个不超过 10​5​​ 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以空格分隔。

输出格式:

在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。

输入样例:

4
0.1 0.2 0.3 0.4

输出样例:

5.00
#include
#include
int main()
{
    int N, i = 0,j = 0;
    scanf("%d",&N);
    double data[N];
    for(i = 0; i

这道题真的绝了,想到之后很简单,想不到,脑子都快废了,,,,每个数字的出现次数是很神奇的哦

0.1 : 4 * 1

0.2 : 3 * 2

0.3 : 2 * 3

0.4 : 1 * 4

so,(N-i)* ( i + 1)

你可能感兴趣的:(PTA)