来源:雷克世界
作者:Christian Howard 编译:嗯~阿童木呀、我是卡布达
概要:Google在2017年NIPS大会将展现出色的影响力,约有450多名Google员工将会通过技术讲座、海报、研讨会、比赛以及教程等方式向更广泛的学术研究界人士学习与交流。
本周,第31届神经信息处理系统年会(NIPS 2017)(https://nips.cc/Conferences/2017)将于加利福尼亚州长滩市举办,这是一个机器学习和计算神经科学会议,会议内容将涵盖邀约嘉宾演讲、成果演示以及一些最新的机器学习研究报告。Google在2017年NIPS大会将展现出色的影响力,约有450多名Google员工将会通过技术讲座、海报、研讨会、比赛以及教程等方式向更广泛的学术研究界人士学习与交流。
众所周知,Google处于机器学习的最前沿,积极地在从经典算法到深度学习等领域进行全面探索。注重理论和应用的协调发展,我们在语言理解、语音、翻译、视觉处理和预测方面的大部分研究都依赖于当前最先进的技术,以尽可能地扩展发展边界。在所有这些任务和其他许多任务中,我们开发了学习方法从而进行理解和归纳,从而为我们提供了新方法,以便查看旧问题和帮助改变我们现有的工作和生活方式。
如果你对大会感兴趣,可以从下面的列表信息进行详细了解。
注:Google是NIPS 2017的白金赞助商。
组织委员会
执行主席:Samy Bengio
高级领域主席包括:Corinna Cortes、Dale Schuurmans、Hugo Larochelle
领域主席包括:Afshin Rostamizadeh、Amir Globerson、Been Kim、D. Sculley、Dumitru Erhan、Gal Chechik、Hartmut Neven、Honglak Lee、Ian Goodfellow、Jasper Snoek、John Wright、Jon Shlens、Kun Zhang、Lihong Li、Maya Gupta、Moritz Hardt、Navdeep Jaitly、Ryan Adams、Sally Goldman、Sanjiv Kumar、Surya Ganguli、Tara Sainath、Umar Syed、Viren Jain、Vitaly Kuznetsov
邀约嘉宾演讲
《助力未来100年》——John Platt
(https://nips.cc/Conferences/2017/Schedule?showEvent=8729)
接受的论文
《元学习视角下的项目冷启动推荐》A Meta-Learning Perspective on Cold-Start Recommendations for Items
(http://papers.nips.cc/paper/7266-a-meta-learning-perspective-on-cold-start-recommendations-for-items)
Manasi Vartak、Hugo Larochelle、ArvindThiagarajan
《AdaGAN:Boosting Generative Models》
(http://papers.nips.cc/paper/7126-adagan-boosting-generative-models)
Ilya Tolstikhin、SylvainGelly、Olivier Bousquet、Carl-Johann Simon-Gabriel、BernhardSchölkopf
《深度Lattice网络和局部单调函数》Deep Lattice Networks and PartialMonotonic Functions
(http://papers.nips.cc/paper/6891-deep-lattice-networks-and-partial-monotonic-functions)
Seungil You、David Ding、Kevin Canini、Jan Pfeifer、Maya Gupta
《你的图表出自何处》From which world is your graph
(http://papers.nips.cc/paper/6745-from-which-world-is-your-graph)
Cheng Li、Varun Kanade、Felix MFWong、Zhenming Liu
《于众目睽睽之下隐藏图像:深度隐写术》Hiding Images in Plain Sight: Deep Steganography
(http://papers.nips.cc/paper/6802-hiding-images-in-plain-sight-deep-steganography)
Shumeet Baluja
《通过几何自一致性得以改进的图的拉普拉斯矩阵》Improved Graph Laplacian via Geometric Self-Consistency
(http://papers.nips.cc/paper/7032-improved-graph-laplacian-via-geometric-self-consistency)
Dominique Joncas、MarinaMeila、James McQueen
《模型驱动下的条件性独立性测试》Model-Powered Conditional Independence Test
(http://papers.nips.cc/paper/6888-model-powered-conditional-independence-test)
Rajat Sen、Ananda TheerthaSuresh、Karthikeyan Shanmugam、Alexandros Dimakis、Sanjay Shakkottai
《深度学习非线性随机矩阵理论》Nonlinear random matrix theory for deep learning
(http://papers.nips.cc/paper/6857-nonlinear-random-matrix-theory-for-deep-learning)
Jeffrey Pennington、Pratik Worah
《通过动态等距“复活”深度学习中的sigmoid函数:理论与实践》Resurrecting the sigmoid in deep learning through dynamicalisometry: theory and practice
(http://papers.nips.cc/paper/7064-resurrecting-the-sigmoid-in-deep-learning-through-dynamical-isometry-theory-and-practice)
Jeffrey Pennington、SamuelSchoenholz、Surya Ganguli
《用SGD学习网络的共轭内核类》SGD Learns the Conjugate Kernel Class of the Network
(http://papers.nips.cc/paper/6836-sgd-learns-the-conjugate-kernel-class-of-the-network)
Amit Daniely
《SVCCA:深度学习动力学和可解释性的奇异向量典型相关分析》SVCCA: Singular Vector Canonical Correlation Analysis for DeepLearning Dynamics and Interpretability
(http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability)
Maithra Raghu、Justin Gilmer、JasonYosinski、Jascha Sohl-Dickstein
《用循环神经模块学习分层信息流》Learning Hierarchical Information Flow with Recurrent Neural Modules
(http://papers.nips.cc/paper/7249-learning-hierarchical-information-flow-with-recurrent-neural-modules)
Danijar Hafner、AlexanderIrpan、James Davidson、Nicolas Heess
《Online Learning with Transductive Regret》
(http://papers.nips.cc/paper/7106-online-learning-with-transductive-regret)
Scott Yang、Mehryar Mohri
《随机下降动力学中的加速和平均》Acceleration and Averaging in Stochastic Descent Dynamics
(http://papers.nips.cc/paper/7256-acceleration-and-averaging-in-stochastic-descent-dynamics)
Walid Krichene、Peter Bartlett
《通过模型选择进行无参数在线学习》Parameter-Free Online Learning via Model Selection
(http://papers.nips.cc/paper/7183-parameter-free-online-learning-via-model-selection)
Dylan J Foster、Satyen Kale、MehryarMohri、Karthik Sridharan
《胶囊之间的动态路由》Dynamic Routing Between Capsules
(http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules)
Sara Sabour、Nicholas Frosst、Geoffrey EHinton
《通过语言调整早期视觉处理》Modulating early visual processing by language
(http://papers.nips.cc/paper/7237-modulating-early-visual-processing-by-language)
Harm de Vries、Florian Strub、Jeremie Mary、HugoLarochelle、Olivier Pietquin、Aaron C Courville
《MarrNet:通过2.5DSketches进行3D形状重建》MarrNet: 3D Shape Reconstruction via 2.5D Sketches
(http://papers.nips.cc/paper/6657-marrnet-3d-shape-reconstruction-via-25d-sketches)
Jiajun Wu、Yifan Wang、Tianfan Xue、Xingyuan Sun、Bill Freeman、JoshTenenbaum
《亲和聚类:规模性分层聚类》Affinity Clustering: Hierarchical Clustering at Scale
(http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale)
Mahsa Derakhshan、SoheilBehnezhad、Mohammadhossein Bateni、Vahab Mirrokni、MohammadTaghi Hajiaghayi、Silvio Lattanzi、RaimondasKiveris
《用于映射推理的异步并行坐标最小化》Asynchronous Parallel Coordinate Minimization for MAP Inference
(http://papers.nips.cc/paper/7156-asynchronous-parallel-coordinate-minimization-for-map-inference)
Ofer Meshi、Alexander Schwing
《用Softmax策略梯度进行冷启动强化学习》Cold-Start Reinforcement Learning with Softmax Policy Gradient
(http://papers.nips.cc/paper/6874-cold-start-reinforcement-learning-with-softmax-policy-gradient)
Nan Ding、Radu Soricut
《过滤变分目标》Filtering Variational Objectives
(http://papers.nips.cc/paper/7235-filtering-variational-objectives)
Chris J Maddison、DieterichLawson、George Tucker、Mohammad Norouzi、Nicolas Heess、Andriy Mnih、Yee Whishe、Arnaud Doucet
《Multi-Armed Bandits with Metric Movement Costs》
(http://papers.nips.cc/paper/7000-multi-armed-bandits-with-metric-movement-costs)
Tomer Koren、Roi Livni、YishayMansour
《用于快速相似搜索的多尺度量化》Multiscale Quantization for Fast Similarity Search
(http://papers.nips.cc/paper/7157-multiscale-quantization-for-fast-similarity-search)
Xiang Wu、Ruiqi Guo、AnandaTheertha Suresh、Sanjiv Kumar、Daniel Holtmann-Rice、David Simcha、Felix Yu
《减少重新参数化的梯度方差》Reducing Reparameterization Gradient Variance
(http://papers.nips.cc/paper/6961-reducing-reparameterization-gradient-variance)
Andrew Miller、Nicholas Foti、AlexanderD'Amour、Ryan Adams
《分担统计成本》Statistical Cost Sharing
(http://papers.nips.cc/paper/7202-statistical-cost-sharing)
Eric Balkanski、Umar Syed、SergeiVassilvitskii
《结构随机正交嵌入的不合理有效性》The Unreasonable Effectiveness of Structured Random OrthogonalEmbeddings
(http://papers.nips.cc/paper/6626-the-unreasonable-effectiveness-of-structured-random-orthogonal-embeddings)
Krzysztof Choromanski、MarkRowlandAdrian Weller
《值预测网络》Value Prediction Network
(http://papers.nips.cc/paper/7192-value-prediction-network)
Junhyuk Oh、Satinder Singh、Honglak Lee
《REBAR:离散潜变量模型的低方差、无偏差梯度估计》REBAR: Low-variance, unbiased gradient estimates for discrete latentvariable models
(http://papers.nips.cc/paper/6856-rebar-low-variance-unbiased-gradient-estimates-for-discrete-latent-variable-models)
George Tucker、Andriy Mnih、Chris JMaddison、Dieterich Lawson、Jascha Sohl-Dickstein
《生成式对抗性学习的近似与收敛》Approximation and Convergence Properties of Generative AdversarialLearning
(http://papers.nips.cc/paper/7138-approximation-and-convergence-properties-of-generative-adversarial-learning)
Shuang Liu、Olivier Bousquet、KamalikaChaudhuri
《无可或缺的注意力》Attention is All you Need
(http://papers.nips.cc/paper/7181-attention-is-all-you-need)
Ashish Vaswani、Noam Shazeer、Niki Parmar、JakobUszkoreit、Llion Jones、Aidan N Gomez、ŁukaszKaiser、Illia Polosukhin
《PASS-GLM:用于扩展性贝叶斯GLM推理的多项式近似充分统计》PASS-GLM: polynomial approximate sufficient statistics for scalableBayesian GLM inference
(http://papers.nips.cc/paper/6952-pass-glm-polynomial-approximate-sufficient-statistics-for-scalable-bayesian-glm-inference)
Jonathan Huggins、Ryan Adams、TamaraBroderick
《重复逆向强化学习》Repeated Inverse Reinforcement Learning
(http://papers.nips.cc/paper/6778-repeated-inverse-reinforcement-learning)
Kareem Amin、Nan Jiang、SatinderSingh
《通过Fairlets进行公平聚类》Fair Clustering Through Fairlets
(http://papers.nips.cc/paper/7088-fair-clustering-through-fairlets)
Flavio Chierichetti、Ravi Kumar、SilvioLattanzi、Sergei Vassilvitskii
《仿射不变在线优化和低秩专家问题》Affine-Invariant Online Optimization and the Low-rank ExpertsProblem
(http://papers.nips.cc/paper/7060-affine-invariant-online-optimization-and-the-low-rank-experts-problem)
Tomer Koren、Roi Livni
《批量重新正则化:在批量正则化模型中降低小批量依赖性》Batch Renormalization: Towards Reducing Minibatch Dependence inBatch-Normalized Models
(http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models)
Sergey Ioffe
《值与基于策略的强化学习间鸿沟的弥合》Bridging the Gap Between Value and Policy Based ReinforcementLearning
(http://papers.nips.cc/paper/6870-bridging-the-gap-between-value-and-policy-based-reinforcement-learning)
Ofir Nachum、Mohammad Norouzi、Kelvin Xu、DaleSchuurmans
《鉴别式状态空间模型》Discriminative State Space Models
(http://papers.nips.cc/paper/6870-bridging-the-gap-between-value-and-policy-based-reinforcement-learning)
Vitaly Kuznetsov、MehryarMohri
《动态收益分享》Dynamic Revenue Sharing
(http://papers.nips.cc/paper/6861-dynamic-revenue-sharing)
Santiago Balseiro、Max Lin,Vahab Mirrokni、Renato Leme、Song Zuo
《用于线性动力系统估计的多视图矩阵分解》Multi-view Matrix Factorization for Linear Dynamical SystemEstimation
(http://papers.nips.cc/paper/7284-multi-view-matrix-factorization-for-linear-dynamical-system-estimation)
Mahdi Karami、Martha White、DaleSchuurmans、Csaba Szepesvari
《黑箱反向传播和雅可比传感》On Blackbox Backpropagation and Jacobian Sensing
(http://papers.nips.cc/paper/7230-on-blackbox-backpropagation-and-jacobian-sensing)
Krzysztof Choromanski、VikasSindhwani
《快速移位的一致性》On the Consistency of Quick Shift
(http://papers.nips.cc/paper/6610-on-the-consistency-of-quick-shift)
Heinrich Jiang
《用近似出价预测的收益优化》Revenue Optimization with Approximate Bid Predictions
(http://papers.nips.cc/paper/6782-revenue-optimization-with-approximate-bid-predictions)
Andres Munoz、Sergei Vassilvitskii
《声音的形状和材质》Shape and Material from Sound
(http://papers.nips.cc/paper/6727-shape-and-material-from-sound)
Zhoutong Zhang、Qiujia Li、ZhengjiaHuang、Jiajun Wu、Josh Tenenbaum、Bill Freeman
《学习通过视觉去动画来看物理》Learning to See Physics via Visual De-animation
(http://papers.nips.cc/paper/6620-learning-to-see-physics-via-visual-de-animation)
Jiajun Wu、Erika Lu、PushmeetKohli、Bill Freeman、Josh Tenenbaum
会议演示
具有高效和鲁棒性的移动视觉的电子屏幕保护器
(https://nips.cc/Conferences/2017/Schedule?showEvent=9757)
Hee Jung Ryu、Florian Schroff
Magenta和deeplearn.js:实时控制浏览器中的深度音乐模型
(https://nips.cc/Conferences/2017/Schedule?showEvent=9762)
Curtis Hawthorne、Ian Simon、Adam Roberts、Jesse Engel、DanielSmilkov、Nikhil Thorat、Douglas Eck
研讨会
2017年第六届自动知识库建设(AKBC)研讨会
(https://nips.cc/Conferences/2017/Schedule?showEvent=8785)
项目委员会包括:Arvind Neelakanta
作者包括:Jiazhong Nie、Ni Lao
现实世界中的行为与交互:机器人学习所面临的挑战
(https://nips.cc/Conferences/2017/Schedule?showEvent=8764)
特邀演讲嘉宾包括:Pierre Sermanet
近似贝叶斯推理的进展
(https://nips.cc/Conferences/2017/Schedule?showEvent=8781)
小组主持人:Matthew D. Hoffman
会话AI——当前的实践和未来的潜力
(https://nips.cc/Conferences/2017/Schedule?showEvent=8757)
特邀演讲嘉宾包括:Matthew Henderson、Dilek Hakkani-Tur
主办单位包括:Larry Heck
极端分类:极大标记空间中进行多类和多标记学习
(https://nips.cc/Conferences/2017/Schedule?showEvent=8759)
特邀演讲嘉宾包括:Ed Chi、Mehryar Mohri
战略行为层面的学习Learning in the Presence of Strategic Behavior
(https://nips.cc/Conferences/2017/Schedule?showEvent=8784)
特邀演讲嘉宾包括:Mehryar Mohri
主持人包括:Andres Munoz Medina、Sebastien Lahaie、Sergei Vassilvitskii、Balasubramanian Sivan
在分布式、函数、图形和群组方面的学习Learning on Distributions, Functions, Graphs and Groups
(https://nips.cc/Conferences/2017/Schedule?showEvent=8770)
特邀演讲嘉宾包括:Corinna Cortes
机器欺骗Machine Deception
(https://nips.cc/Conferences/2017/Schedule?showEvent=8763)
主办单位包括:Ian Goodfellow
特邀演讲嘉宾包括:Jacob Buckman、Aurko Roy、Colin Raffel、Ian Goodfellow
机器学习和计算机安全Machine Learning and Computer Security
(https://nips.cc/Conferences/2017/Schedule?showEvent=8775)
特邀演讲嘉宾包括:Ian Goodfellow
主办单位包括:Nicolas Papernot
作者包括:Jacob Buckman、Aurko Roy、Colin Raffel、Ian Goodfellow
创意性和设计性机器学习Machine Learning for Creativity and Design
(https://nips.cc/Conferences/2017/Schedule?showEvent=8777)
主讲人包括:Ian Goodfellow
主办方包括:Doug Eck、David Ha
用于音频信号处理的机器学习(ML4Audio)Machine Learning for Audio Signal Processing
(https://nips.cc/Conferences/2017/Schedule?showEvent=8790)
作者包括:Aren Jansen、Manoj Plakal、Dan Ellis、Shawn Hershey、Channing Moore、Rif A. Saurous、Yuxuan Wang、RJ Skerry-Ryan、Ying Xiao、Daisy Stanton、Joel Shor、Eric Batternberg、Rob Clark
健康领域的机器学习(ML4H)Machine Learning for Health
(https://nips.cc/Conferences/2017/Schedule?showEvent=9561)
组织者包括:Jasper Snoek,Alex Wiltschko
主题演讲:Fei-Fei Li
2017年NIPS系列研讨会
(https://nips.cc/Conferences/2017/Schedule?showEvent=8750)
组织者包括:Vitaly Kuznetsov
作者包括:Brendan Jou
OPT 2017:机器学习的优化
(https://nips.cc/Conferences/2017/Schedule?showEvent=8771)
主办单位包括:Sashank Reddi
机器学习系统研讨会
(https://nips.cc/Conferences/2017/Schedule?showEvent=8774)
邀请演讲嘉宾包括:Rajat Monga、Alexander Mordvintsev、Chris Olah、Jeff Dean
作者包括:Alex Beutel、Tim Kraska、Ed H. Chi、D. Scully、Michael Terry
均衡的人工智能Aligned Artificial Intelligence
(https://nips.cc/Conferences/2017/Schedule?showEvent=8794)
特邀演讲嘉宾包括:Ian Goodfellow
贝叶斯深度学习
Bayesian Deep Learning
(https://nips.cc/Conferences/2017/Schedule?showEvent=8753)
主办单位包括:Kevin Murphy
特邀演讲嘉宾包括:Nal Kalchbrenner、Matthew D. Hoffman
BigNeuro 2017
(https://nips.cc/Conferences/2017/Schedule?showEvent=8780)
特邀演讲嘉宾包括:Viren Jain
认知人工智能:来自自然智能的见解Cognitively Informed Artificial Intelligence: Insights From NaturalIntelligence
(https://nips.cc/Conferences/2017/Schedule?showEvent=8765)
作者包括:Jiazhong Nie、Ni Lao
超级计算机规模领域的深度学习
(https://nips.cc/Conferences/2017/Schedule?showEvent=8793)
主办单位包括:Erich Elsen,Zak Stone、Brennan Saeta、Danijar Haffner
深度学习:连接理论与实践的桥梁
(https://nips.cc/Conferences/2017/Schedule?showEvent=8776)
特邀演讲嘉宾包括:Ian Goodfellow
深度学习的可解释性、理解性和可视化
(https://nips.cc/Conferences/2017/Schedule?showEvent=8795)
特邀演讲嘉宾包括:Kim、Honglak Lee
作者包括:Pieter Kinderman、Sara Hooker、Dumitru Erhan、Been Kim
学习解构特征:从感知到控制
(https://nips.cc/Conferences/2017/Schedule?showEvent=8787)
主办方包括:Honglak Lee
作者包括:Jasmine Hsu、Arkanath Pathak、Abhinav Gupta、James Davidson、Honglak Lee
学习有限的标记数据:弱监督及其超越
(https://nips.cc/Conferences/2017/Schedule?showEvent=9478)
特邀演讲嘉宾包括:Ian Goodfellow
在电话和其他消费者设备领域的机器学习
(https://nips.cc/Conferences/2017/Schedule?showEvent=8791)
特邀演讲嘉宾包括:Rajat Monga
组织者包括:Hrishikesh Aradhye
作者包括Suyog Gupta、Sujith Ravi
最有传输和机器学习Optimal Transport and Machine Learning
(https://nips.cc/Conferences/2017/Schedule?showEvent=8758)
主办单位包括:Olivier Bousquet
基于梯度的机器学习软件和技术的未来发展
(https://nips.cc/Conferences/2017/Schedule?showEvent=8779)
主办方包括:Alex Wiltschko、Bart vanMerriënboer
元学习研讨会
(https://nips.cc/Conferences/2017/Schedule?showEvent=8767)
主办单位包括:Hugo Larochelle
小组成员包括:Samy Bengio
作者包括:Aliaksei Severyn、Sascha Rothe
专题讨论会
深度强化学习研讨会
(https://nips.cc/Conferences/2017/Schedule?showEvent=8743)
作者包括:Benjamin Eysenbach、Shane Gu、Julian Ibarz、Sergey Levine
可解释性机器学习
(https://nips.cc/Conferences/2017/Schedule?showEvent=8744)
作者包括:Minmin Chen
元学习(Metalearning)
(https://nips.cc/Conferences/2017/Schedule?showEvent=8746)
主办方包括:Quoc V Le
竞赛
对抗式攻击和防御
(https://www.kaggle.com/c/nips-2017-defense-against-adversarial-attack)
主办方包括:Alexey Kurakin、Ian Goodfellow、Samy Bengio
竞争IV:临床可操作的基因突变分类
(https://www.kaggle.com/c/msk-redefining-cancer-treatment)
主办单位包括:Wendy Kan
教程
机器学习的公平性
(https://nips.cc/Conferences/2017/Schedule?showEvent=8734)
Solon Barocas、 Moritz Hardt
未来智能实验室致力于研究互联网与人工智能未来发展趋势,观察评估人工智能发展水平,由中国科学院虚拟经济与数据科学研究中心刘锋、石勇、和刘颖创建。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;构建互联网(城市)云脑架构,形成科技趋势标杆企业库并应用与行业与智慧城市的智能提升。
如果您对实验室的研究感兴趣,欢迎支持和加入我们。扫描以下二维码或点击本文左下角“阅读原文”