波兰式、逆波兰式、表达式求值

波兰式、逆波兰式、表达式求值

中缀表达式

我们在数学中学到的表达式被称为中缀表达式,操作符号在操作数中间,比如2 + 3 * (5 - 1)。对人类而言,这种表达方式显而易见,求值也很直接,先算乘除再算加减,先算括号内再算括号外。然而,这个表达式对于计算机而言却很费解。

前缀表达式

早在1920年,波兰科学家扬·武卡谢维奇就发明了一种不需要括号的表示法,可以用来表示一个计算表达式。即将操作符号写在操作数之前,也就是前缀表达式,即波兰式(Polish Notation,PN)。

比如2 + 3 * (5 - 1)这个表达式的前缀表达式为+ 2 * 3 - 5 1,阅读这个表达式需要从左至右读入表达式,如果一个操作符后面跟着两个操作数时,则计算,然后将结果作为操作数替换这个操作符和两个操作数,重复此步骤,直至所有操作符处理完毕。

可以看出,这种计算过程也相当复杂,需要多次遍历表达式,而且需要识别一个操作符后面跟着两个操作数这种模式,相比而言,下文中的逆波兰式要更为直接和简单。

前缀表达式的计算机求值:

从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算,并将结果入栈,重复上述步骤直到表达式最左端,最后运算得出的值即为表达式的结果。

将中缀表达式转换为前缀表达式:

遵循以下步骤:

  1. 初始化两个栈:运算符栈s1和存储中间结果的栈s2;
  2. 从右至左扫描中缀表达式;
  3. 遇到操作数时,将其压入s2;
  4. 遇到运算符时,比较其与s1栈顶运算符的优先级;
    4.1 如果s1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
    4.2 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入s1;
    4.3 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到4.1与s1中新的栈顶运算符相比较;
  5. 遇到括号时:
    5.1 如果是右括号“)”,则直接压入s1;
    5.2 如果是左括号“(”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到右括号为止,此时将这一对括号丢弃;
  6. 重复步骤2至5,直到表达式的最左端;
  7. 将s1中剩余的运算符依次依次弹出并压入s2;
  8. 依次弹出s2中的元素并输出,结果即为中缀表达式对应的前缀表达式。

例如,将中缀表达式 1+(2+3)*4-5 转换为前缀表达式的过程如下:

扫描到的元素 S2(栈底->栈顶) S1 (栈底->栈顶) 说明
5 5 数字,直接入栈
- 5 - S1为空,运算符直接入栈
) 5 - ) 右括号直接入栈
4 5 4 - ) 数字直接入栈
× 5 4 - ) × S1栈顶是右括号,直接入栈
) 5 4 - ) × ) 右括号直接入栈
3 5 4 3 - ) × ) 数字
+ 5 4 3 - ) × ) + S1栈顶是右括号,直接入栈
2 5 4 3 2 - ) × ) + 数字
( 5 4 3 2 + - ) × 左括号,弹出运算符直至遇到右括号
( 5 4 3 2 + × - 同上
+ 5 4 3 2 + × - + 优先级与-相同,入栈
1 5 4 3 2 + × 1 - + 数字
到达最左端 5 4 3 2 + × 1 + - S1中剩余的运算符

因此结果为“ - + 1 * + 2 3 4 5 “。

后缀表达式

后缀表达式也称为逆波兰式(Reverse Polish Notation,RPN),和前缀表达式刚好相反,是将操作符号放置于操作数之后,比如2 + 3 * (5 - 1)用逆波兰式来表示则是:2 3 5 1 - * +。

逆波兰式的计算也是从左往右依次读取,当读到操作符时,将之前的两个操作数做计算,然后替换这两个操作数和操作符,接着读取,重复此步骤。

上面这个步骤可以很容易的用栈来实现:

从左往右依次读取表达式,如果是数字则将该数字压栈,如果是符号,则将之前的两个数字出栈,做计算后,将计算结果压栈,直到表达式读取结束。栈中剩下的一个数就是计算结果。

逆波兰式看起来像波兰式反过来,比如5 + 1的波兰式是+ 5 1,逆波兰式为5 1 +或者1 5 +。也很明显,逆波兰式并不是简单的将波兰式反过来,因为,减法和除法中减数和被减数、除数与被除数是不能交换的,即- 10 5- 5 10就完全不一样。

后缀表达式的计算机求值:

与前缀表达式类似,只是顺序是从左至右:

从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。

将中缀表达式转换为后缀表达式:

与转换为前缀表达式相似,遵循以下步骤:

  1. 初始化两个栈:运算符栈s1和储存中间结果的栈s2;
  2. 从左至右扫描中缀表达式;
  3. 遇到操作数时,将其压入s2;
  4. 遇到运算符时,比较其与s1栈顶运算符的优先级:
    4.1 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
    4.2 否则,若优先级比栈顶运算符的高,也将运算符压入s1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
    4.3 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到4.1与s1中新的栈顶运算符相比较;
  5. 遇到括号时:
    5.1 如果是左括号“(”,则直接压入s1;
    5.2 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃;
  6. 重复步骤2至5,直到表达式的最右边;
  7. 将s1中剩余的运算符依次弹出并压入s2;
  8. 依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。

例如,将中缀表达式$ 1+(2+3)*4-5 $转换为前缀表达式的过程如下:

扫描到的元素 S2(栈底->栈顶) S1 (栈底->栈顶) 说明
1 1 数字,直接入栈
+ 1 + S1为空,运算符直接入栈
( 1 + ( 左括号,直接入栈
( 1 + ( ( 同上
2 1 2 + ( ( 数字
+ 1 2 + ( ( + S1栈顶为左括号,运算符直接入栈
3 1 2 3 + ( ( + 数字
) 1 2 3 + + ( 右括号,弹出运算符直至遇到左括号
× 1 2 3 + + ( × S1栈顶为左括号,运算符直接入栈
4 1 2 3 + 4 + ( × 数字
) 1 2 3 + 4 × + 右括号,弹出运算符直至遇到左括号
- 1 2 3 + 4 × + - -与+优先级相同,因此弹出+,再压入-
5 1 2 3 + 4 × + 5 - 数字
到达最右端 1 2 3 + 4 × + 5 - S1中剩余的运算符

因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出)。

你可能感兴趣的:(HzqRomon)