1.题目描述:
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 107104 | Accepted: 33434 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
Source
对数组A有两种操作Q x y是询问x,y区间的和C x y z是对[x, y]区间内所有数都加z
3.解题思路:
很容易想到用线段树维护,这里是区间更新,可以用lazy大法,简要的说,就是对于一个区间,如果它位于要更新的子区间内,那么就延缓对它儿子区间的更新,这样可以进一步降低update的复杂度。
4.AC代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define INF 0x3f3f3f3f
#define maxn 100010
#define lson root << 1
#define rson root << 1 | 1
#define N 1111
#define eps 1e-6
#define pi acos(-1.0)
#define e exp(1.0)
using namespace std;
const int mod = 1e9 + 7;
typedef long long ll;
typedef unsigned long long ull;
struct tree
{
int l, r;
ll w, lazy;
} t[maxn << 2];
void pushup(int root)
{
t[root].w = t[lson].w + t[rson].w;
}
void pushdown(int root)
{
if (t[root].lazy)
{
t[lson].lazy += t[root].lazy;
t[lson].w += (t[lson].r - t[lson].l + 1) * t[root].lazy;
t[rson].lazy += t[root].lazy;
t[rson].w += (t[rson].r - t[rson].l + 1) * t[root].lazy;
t[root].lazy = 0;
}
}
void build(int l, int r, int root)
{
t[root].l = l;
t[root].r = r;
t[root].lazy = 0;
if (l == r)
{
scanf("%lld", &t[root].w);
return;
}
int mid = l + r >> 1;
build(l, mid, lson);
build(mid + 1, r, rson);
pushup(root);
}
void update(ll c, int l, int r, int root)
{
if (l <= t[root].l && t[root].r <= r)
{
t[root].lazy += c;
t[root].w += c * (t[root].r - t[root].l + 1);
return;
}
pushdown(root);
int mid = t[root].l + t[root].r >> 1;
if (l <= mid)
update(c, l, r, lson);
if (r > mid)
update(c, l, r, rson);
pushup(root);
}
ll query(int l, int r, int root)
{
if (l <= t[root].l && t[root].r <= r)
return t[root].w;
pushdown(root);
int mid = t[root].l + t[root].r >> 1;
ll ans = 0;
if (l <= mid)
ans += query(l, r, lson);
if (r > mid)
ans += query(l, r, rson);
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long _begin_time = clock();
#endif
int n, q;
char op[3];
while (~scanf("%d%d", &n, &q))
{
build(1, n, 1);
while (q--)
{
int a, b;
ll c;
scanf("%s%d%d", op, &a, &b);
if (op[0] == 'Q')
printf("%lld\n", query(a, b, 1));
else
{
scanf("%lld", &c);
update(c, a, b, 1);
}
}
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
printf("time = %ld ms.", _end_time - _begin_time);
#endif
return 0;
}