首先看Nginx的主进程,主进程从main函数开始运行:
int ngx_cdecl main(int argc, char *const *argv)
{
ngx_int_t i;
ngx_log_t *log;
ngx_cycle_t *cycle, init_cycle;
ngx_core_conf_t *ccf;
ngx_max_sockets = -1;
// 初始化时钟模块,更新时钟(详见ngx_time_update)
ngx_time_init();
// 获取进程号
ngx_pid = ngx_getpid();
// 初始化日志
log = ngx_log_init();
if (log == NULL) { return 1;}
// 初始化Openssl
ngx_ssl_init(log);
ngx_memzero(&init_cycle, sizeof(ngx_cycle_t));
init_cycle.log = log;
ngx_cycle = &init_cycle;
// 创建内存池
init_cycle.pool = ngx_create_pool(1024, log);
if (init_cycle.pool == NULL) { return 1; }
// 保存argc和argv到ngx_argc和ngx_argv中
if (ngx_save_argv(&init_cycle, argc, argv) != NGX_OK) { return 1; }
// 解析argv中的参数,部分作用于init_cycle
if (ngx_getopt(&init_cycle, argc, ngx_argv) != NGX_OK) { return 1; }
// 这里的ngx_show_version、ngx_show_configure和ngx_test_config都是由ngx_getopt确定的
if (ngx_show_version) {
ngx_write_fd(ngx_stderr_fileno, "nginx version: " NGINX_VER CRLF,
sizeof("nginx version: " NGINX_VER CRLF) - 1);
if (ngx_show_configure) { …… }
if (!ngx_test_config) { return 0; }
}
if (ngx_test_config) {
log->log_level = NGX_LOG_INFO;
}
// 获取系统相关参数,例如pagesize和cpu个数;初始化随机种子
if (ngx_os_init(log) != NGX_OK) { return 1; }
if (ngx_crc32_init() != NGX_OK) { return 1; }
// 如果获得了环境变量,就会初始化cycle. Listening,否则直接返回
if (ngx_add_inherited_sockets(&init_cycle) != NGX_OK) { return 1; }
ngx_max_module = 0;
for (i = 0; ngx_modules[i]; i++) {
ngx_modules[i]->index = ngx_max_module++;
}
// 超级大的一个函数
cycle = ngx_init_cycle(&init_cycle);
if (cycle == NULL) {
if (ngx_test_config) {
ngx_log_error(NGX_LOG_EMERG, log, 0,
"the configuration file %s test failed",
init_cycle.conf_file.data);
}
return 1;
}
if (ngx_test_config) {
ngx_log_error(NGX_LOG_INFO, log, 0,
"the configuration file %s was tested successfully",
cycle->conf_file.data);
return 0;
}
// 打印日志
ngx_os_status(cycle->log);
ngx_cycle = cycle;
// 宏展开为ccf = cycle->conf_ctx[ngx_core_module.index];
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
// ccf->master在ngx_core_module_init_conf中被设置为1
ngx_process = ccf->master ? NGX_PROCESS_MASTER : NGX_PROCESS_SINGLE;
// 设置软中断(信号)处理函数ngx_signal_handler,该函数完成了对11种信号的处理
if (ngx_init_signals(cycle->log) != NGX_OK) { return 1; }
if (!ngx_inherited && ccf->daemon) {
if (ngx_daemon(cycle->log) != NGX_OK) {
return 1;
}
ngx_daemonized = 1;
}
// 创建进程记录文件
if (ngx_create_pidfile(&ccf->pid, cycle->log) != NGX_OK) {
return 1;
}
if (ngx_process == NGX_PROCESS_MASTER) {
ngx_master_process_cycle(cycle);
} else {
ngx_single_process_cycle(cycle);
}
return 0;
}
main函数主要完成一系列初始化(详见注释),然后进入进程循环函数。根据输入参数的设置,可以进入主进程循环(ngx_master_process_cycle)或者单进程循环(ngx_single_process_cycle)。一般都是进入主进程循环。在该模式下,主进程会启动若干个(等于CPU核心数)工作进程用以完成相关计算。
下面是主进程真正进入主循环之前所做的工作:
void ngx_master_process_cycle(ngx_cycle_t *cycle)
{
char *title;
u_char *p;
size_t size;
ngx_int_t i;
ngx_uint_t n;
sigset_t set;
struct itimerval itv;
ngx_uint_t live;
ngx_msec_t delay;
ngx_listening_t *ls;
ngx_core_conf_t *ccf;
// 屏蔽前述11种信号之10种(SIGPIPE除外,因为信号处理函数唯独对SIGPIPE没处理)
sigemptyset(&set);
sigaddset(&set, SIGCHLD);
sigaddset(&set, SIGALRM);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGINT);
sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));
if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"sigprocmask() failed");
}
sigemptyset(&set);
size = sizeof(master_process);
for (i = 0; i < ngx_argc; i++) {
size += ngx_strlen(ngx_argv[i]) + 1;
}
title = ngx_palloc(cycle->pool, size);
p = ngx_cpymem(title, master_process, sizeof(master_process) - 1);
for (i = 0; i < ngx_argc; i++) {
*p++ = ' ';
p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size);
}
ngx_setproctitle(title);
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
ngx_start_worker_processes(cycle, ccf->worker_processes, NGX_PROCESS_RESPAWN);
ngx_start_garbage_collector(cycle, NGX_PROCESS_RESPAWN);
ngx_new_binary = 0;
delay = 0;
live = 1;
for ( ;; ) {
// delay只在ngx_terminate被置位后才被赋为非零值,然后在此基础上每次循环增加一倍,并添加一个定时器,在delay毫秒后唤醒该进程
if (delay) {
delay *= 2;
ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
"temination cycle: %d", delay);
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 0;
itv.it_value.tv_sec = delay / 1000;
itv.it_value.tv_usec = (delay % 1000 ) * 1000;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {
ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
"setitimer() failed");
}
}
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend");
sigsuspend(&set);
ngx_time_update(0, 0);
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "wake up");
if (ngx_reap) {
ngx_reap = 0;
ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children");
// 如果还有运行着的工作进程则返回1,否则返回0
live = ngx_reap_children(cycle);
}
// 如果工作进程已死并且主进程终端或退出标志置位,则退出主进程
if (!live && (ngx_terminate || ngx_quit)) {
ngx_master_process_exit(cycle);
}
if (ngx_terminate) {
if (delay == 0) {
delay = 50;
}
// 运行到这里说明工作进程没有全部退出,从delay=0开始依次间隔50ms、100ms、200ms、400ms、800ms向所有工作进程发送SIGTERM信号,最后一次直接发送SIGKILL强制终止工作进程。
if (delay > 1000) {
ngx_signal_worker_processes(cycle, SIGKILL);
} else {
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_TERMINATE_SIGNAL));
}
continue;
}
if (ngx_quit) {
// 向所有工作进程发送SIGQUIT信号
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
// 关闭所有监听套接字
ls = cycle->listening.elts;
for (n = 0; n < cycle->listening.nelts; n++) {
if (ngx_close_socket(ls[n].fd) == -1) {
ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno,
ngx_close_socket_n " %V failed",
&ls[n].addr_text);
}
}
cycle->listening.nelts = 0;
continue;
}
if (ngx_reconfigure) {
ngx_reconfigure = 0;
// 另外再创建ccf->worker_processes个工作进程
if (ngx_new_binary) {
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_RESPAWN);
ngx_start_garbage_collector(cycle, NGX_PROCESS_RESPAWN);
ngx_noaccepting = 0;
continue;
}
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");
// 重新创建ccf->worker_processes个工作进程
cycle = ngx_init_cycle(cycle);
if (cycle == NULL) {
cycle = (ngx_cycle_t *) ngx_cycle;
continue;
}
ngx_cycle = cycle;
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_JUST_RESPAWN);
ngx_start_garbage_collector(cycle, NGX_PROCESS_JUST_RESPAWN);
live = 1;
ngx_signal_worker_processes(cycle, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
}
if (ngx_restart) {
ngx_restart = 0;
ngx_start_worker_processes(cycle, ccf->worker_processes,
NGX_PROCESS_RESPAWN);
ngx_start_garbage_collector(cycle, NGX_PROCESS_RESPAWN);
live = 1;
}
if (ngx_reopen) {
ngx_reopen = 0;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");
ngx_reopen_files(cycle, ccf->user);
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_REOPEN_SIGNAL));
}
if (ngx_change_binary) {
ngx_change_binary = 0;
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary");
ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv);
}
if (ngx_noaccept) {
ngx_noaccept = 0;
ngx_noaccepting = 1;
ngx_signal_worker_processes(cycle,
ngx_signal_value(NGX_SHUTDOWN_SIGNAL));
}
}
}
void ngx_signal_handler(int signo)
{
char *action;
ngx_int_t ignore;
ngx_err_t err;
ngx_signal_t *sig;
ignore = 0;
err = ngx_errno;
for (sig = signals; sig->signo != 0; sig++) {
if (sig->signo == signo) {
break;
}
}
ngx_time_update(0, 0);
action = "";
switch (ngx_process) {
case NGX_PROCESS_MASTER:
case NGX_PROCESS_SINGLE:
switch (signo) {
case ngx_signal_value(NGX_SHUTDOWN_SIGNAL):
ngx_quit = 1;
action = ", shutting down";
break;
case ngx_signal_value(NGX_TERMINATE_SIGNAL):
case SIGINT:
ngx_terminate = 1;
action = ", exiting";
break;
case ngx_signal_value(NGX_NOACCEPT_SIGNAL):
ngx_noaccept = 1;
action = ", stop accepting connections";
break;
case ngx_signal_value(NGX_RECONFIGURE_SIGNAL):
ngx_reconfigure = 1;
action = ", reconfiguring";
break;
case ngx_signal_value(NGX_REOPEN_SIGNAL):
ngx_reopen = 1;
action = ", reopening logs";
break;
case ngx_signal_value(NGX_CHANGEBIN_SIGNAL):
if (getppid() > 1 || ngx_new_binary > 0) {
/*
* Ignore the signal in the new binary if its parent is
* not the init process, i.e. the old binary's process
* is still running. Or ignore the signal in the old binary's
* process if the new binary's process is already running.
*/
action = ", ignoring";
ignore = 1;
break;
}
ngx_change_binary = 1;
action = ", changing binary";
break;
case SIGALRM:
break;
case SIGIO:
ngx_sigio = 1;
break;
case SIGCHLD:
ngx_reap = 1;
break;
}
break;
case NGX_PROCESS_WORKER:
...
break;
}
...
if (signo == SIGCHLD) {
ngx_process_get_status();
}
ngx_set_errno(err);
}
NGX_SHUTDOWN_SIGNAL(SIGQUIT)信号会将ngx_quit变量置一。NGX_TERMINATE_SIGNAL(SIGTERM)和SIGINT信号对于主进程没有区别,都是将ngx_terminate置一。NGX_NOACCEPT_SIGNAL(SIGWINCE)信号会将ngx_noaccept变量置一。NGX_RECONFIGURE_SIGNAL(SIGHUP)信号会将ngx_reconfigure变量置一。NGX_REOPEN_SIGNAL(SIGUSR1)会将ngx_reopen变量置一。NGX_CHANGEBIN_SIGNAL(SIGUSR2)信号会将ngx_change_binary变量置一,这时需要注意,如果一个新的(Nginx)程序的父进程不是init进程,也就是说新程序的父进程仍然是旧程序,旧程序并没有死掉,就忽略该信号,Nginx并不希望在一台主机上运行着两个程序。SIGIO信号会将ngx_sigio变量置一。SIGCHLD会将ngx_reap变量置一。SIGALRM信号不做任何处理,将最终唤醒进程执行定时器的相关响应。SIGPIPE信号没有出现,直接忽略。
我们首先来看SIGCHLD信号,对应着ngx_reap,在主循环中如果ngx_reap置一则调用ngx_reap_children函数。子进程结束时,父进程就会收到SIGCHLD信号。所以ngx_reap主要做的是:关闭与该子进程(工作进程)通信的管道;通知其他所有(工作)进程该工作进程退出的消息;对于需要重启的则重启该工作进程(守护功能),同时也要通知其他进程;从进程数组中移除该进程。
static ngx_uint_t ngx_reap_children(ngx_cycle_t *cycle)
{
ngx_int_t i, n;
ngx_uint_t live;
ngx_channel_t ch;
ngx_core_conf_t *ccf;
ch.command = NGX_CMD_CLOSE_CHANNEL;
ch.fd = -1;
live = 0;
for (i = 0; i < ngx_last_process; i++) {
if (ngx_processes[i].pid == -1) {
continue;
}
if (ngx_processes[i].exited) {
if (!ngx_processes[i].detached) {
// 关闭读管道
ngx_close_channel(ngx_processes[i].channel, cycle->log);
ngx_processes[i].channel[0] = -1;
ngx_processes[i].channel[1] = -1;
ch.pid = ngx_processes[i].pid;
ch.slot = i;
// 通知其他所有进程该进程已退出,因为工作进程都是通过fork产生的,所以它们都有和主进程一样的该进程管道句柄,需要关闭
for (n = 0; n < ngx_last_process; n++) {
if (ngx_processes[n].exited
|| ngx_processes[n].pid == -1
|| ngx_processes[n].channel[0] == -1)
{
continue;
}
ngx_write_channel(ngx_processes[n].channel[0],
&ch, sizeof(ngx_channel_t), cycle->log);
}
}
// 需要重启的进程则调用ngx_spawn_process重启。
if (ngx_processes[i].respawn
&& !ngx_processes[i].exiting
&& !ngx_terminate
&& !ngx_quit)
{
if (ngx_spawn_process(cycle, ngx_processes[i].proc,
ngx_processes[i].data,
ngx_processes[i].name, i)
== NGX_INVALID_PID)
{
continue;
}
ch.command = NGX_CMD_OPEN_CHANNEL;
ch.pid = ngx_processes[ngx_process_slot].pid;
ch.slot = ngx_process_slot;
ch.fd = ngx_processes[ngx_process_slot].channel[0];
// 通知其他所有进程,新进程已创建,与上面的类似,也需要设置新进程ID和管道描述符
for (n = 0; n < ngx_last_process; n++) {
if (n == ngx_process_slot
|| ngx_processes[n].pid == -1
|| ngx_processes[n].channel[0] == -1)
{
continue;
}
ngx_write_channel(ngx_processes[n].channel[0],
&ch, sizeof(ngx_channel_t), cycle->log);
}
live = 1;
continue;
}
if (ngx_processes[i].pid == ngx_new_binary) {
ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,
ngx_core_module);
if (ngx_rename_file((char *) ccf->oldpid.data,
(char *) ccf->pid.data)
!= NGX_OK)
{}
ngx_new_binary = 0;
if (ngx_noaccepting) {
ngx_restart = 1;
ngx_noaccepting = 0;
}
}
// 移除该进程
if (i == ngx_last_process - 1) {
ngx_last_process--;
} else {
ngx_processes[i].pid = -1;
}
} else if (ngx_processes[i].exiting || !ngx_processes[i].detached) {
live = 1;
}
}
return live;
}
static void ngx_master_process_exit(ngx_cycle_t *cycle)
{
ngx_uint_t i;
ngx_delete_pidfile(cycle);
ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exit");
for (i = 0; ngx_modules[i]; i++) {
if (ngx_modules[i]->exit_master) {
ngx_modules[i]->exit_master(cycle);
}
}
/*
* Copy ngx_cycle->log related data to the special static exit cycle,
* log, and log file structures enough to allow a signal handler to log.
* The handler may be called when standard ngx_cycle->log allocated from
* ngx_cycle->pool is already destroyed.
*/
ngx_exit_log_file.fd = ngx_cycle->log->file->fd;
ngx_exit_log = *ngx_cycle->log;
ngx_exit_log.file = &ngx_exit_log_file;
ngx_exit_cycle.log = &ngx_exit_log;
ngx_cycle = &ngx_exit_cycle;
ngx_destroy_pool(cycle->pool);
exit(0);
}