一.目标
在米尔科技的z-turn 开发板上实现PL数据流送往PS。
二.流程分析
由于单个DMA每次只能发送一定量的数据,但对于数据源来说数据时源源不断产生的,所以在单个DMA单次发送完成至下一次传输期间,这段时间的数据流失了,所以采用两个DMA实现循环发送数据,防止数据丢失。
自定义一个IP核用于产生源源不断的测试数据模拟数据源,再自定义一个IP用于切换DMA发送数据。
系统框图如下:
通过axi-gpio启动数据源产生数据,数据流再通过DMA切换模块分批次将数据送往DMA。每个DMA发送10万个数据便进行切换,所以数据源采用从1开始累加产生数据,每次在DMA中断中验证最后一个数据是否是10万,20万,30万等等。
三.代码
①数据源模块data_product.v
module data_product(
clk,
rst,
enable,
data_out,
data_enable,
cnt
);
input clk;
input rst;
input enable;
output [31:0]data_out;
output data_enable;
output[3:0]cnt;
reg [31:0]data_out;
reg data_enable;
reg[3:0]cnt;
always@(posedge clk or negedge rst)
begin
if(!rst)
begin
data_out <= 0;
data_enable <= 0;
cnt <= 0;
end
else
begin
if(enable)
begin
if(cnt>=13)cnt <= 0;
else cnt <= cnt + 1;
if(cnt>=1&&cnt<=8)
begin
data_out <= data_out + 1;
data_enable <= 1;
end
else
begin
data_out <= data_out;
data_enable <= 0;
end
end
else
begin
data_enable <= 0;
data_out <= data_out;
cnt <= cnt;
end
end
end
endmodule
②DMA切换模块:selet_dma.v
module selet_dma(
clk,
rst,
data_valid,
data_in,
//dma1
dma1_tvalid,
dma1_tkeep,
dma1_tlast,
dma1_tready,
dma1_tdata,
//dma2
dma2_tvalid,
dma2_tkeep,
dma2_tlast,
dma2_tready,
dma2_tdata,
//
count_dma1,
count_dma2
);
input clk;
input rst;
input data_valid;
input [31:0]data_in;
//dma1
output dma1_tvalid;
output [3:0]dma1_tkeep;
output dma1_tlast;
output [31:0]dma1_tdata;
input dma1_tready;
//dma2
output dma2_tvalid;
output [3:0]dma2_tkeep;
output dma2_tlast;
output [31:0]dma2_tdata;
input dma2_tready;
//count data
output[19:0]count_dma1;//数据输出个数
output[19:0]count_dma2;
//
reg dma1_tvalid;
reg [3:0]dma1_tkeep;
reg dma1_tlast;
reg [31:0]dma1_tdata;
//
reg dma2_tvalid;
reg [3:0]dma2_tkeep;
reg dma2_tlast;
reg [31:0]dma2_tdata;
//
reg[19:0]count_dma1;//数据输出个数
reg[19:0]count_dma2;
reg selet;
reg temp_selet;
always@(negedge clk or negedge rst)
begin
if(!rst)selet <= 0;
else selet <= temp_selet;
end
always@(negedge clk or negedge rst)
begin
if(!rst)temp_selet <= 0;
else
begin
if(count_dma1==20'd99999) temp_selet <= 1;
else if(count_dma2==20'd99999)temp_selet <= 0;
else temp_selet <= temp_selet;
end
end
always@(negedge clk or negedge rst)
begin
if(!rst)
begin
count_dma1 <= 0;
count_dma2 <= 0;
end
else
begin
if(selet==0 && dma1_tready==1 && data_valid==1 )
begin
count_dma2 <= 0;
count_dma1 <= count_dma1 + 1;
end
else if(selet==1 && dma2_tready==1 && data_valid==1)
begin
count_dma1 <= 0;
count_dma2 <= count_dma2 + 1;
end
else
begin
count_dma2 <= count_dma2;
count_dma1 <= count_dma1;
end
end
end
always@(negedge clk or negedge rst)
begin
if(!rst)
begin
dma1_tvalid <= 0;
dma1_tkeep <= 0;
dma1_tlast <= 0;
dma1_tdata <= 0;
dma2_tvalid <= 0;
dma2_tkeep <= 0;
dma2_tlast <= 0;
dma2_tdata <= 0;
end
else
begin
if(data_valid)
begin
if(selet==0)//dma1
begin
dma1_tvalid <= 1;
dma1_tkeep <= 4'b1111;
dma1_tdata <= data_in;
dma2_tvalid <= 0;
dma2_tkeep <= 0;
dma2_tlast <= 0;
dma2_tdata <= 0;
if(count_dma1>=20'd99999)
begin
dma1_tlast <= 1;
end
else
begin
dma1_tlast <= 0;
end
end
else //dma2
begin
dma2_tvalid <= 1;
dma2_tkeep <= 4'b1111;
dma2_tdata <= data_in;
dma1_tvalid <= 0;
dma1_tkeep <= 0;
dma1_tlast <= 0;
dma1_tdata <= 0;
if(count_dma2>=20'd99999)
begin
dma2_tlast <= 1;
end
else
begin
dma2_tlast <= 0;
end
end
end
else
begin
dma1_tvalid <= 0;
dma1_tkeep <= 0;
dma1_tdata <= dma1_tdata;
dma1_tlast <= dma1_tlast;
dma2_tvalid <= 0;
dma2_tkeep <= 0;
dma2_tdata <= dma2_tdata;
dma2_tlast <= dma2_tlast;
end
end
end
endmodule
③设备树代码 pl.dtsi
/ {
amba_pl: amba_pl {
#address-cells = <1>;
#size-cells = <1>;
compatible = "simple-bus";
ranges ;
axi_dma_0: dma@40400000 {
#dma-cells = <1>;
clock-names = "s_axi_lite_aclk", "m_axi_s2mm_aclk";
clocks = <&clkc 15>, <&clkc 15>;
compatible = "xlnx,axi-dma0";
interrupt-names = "s2mm_introut";
interrupt-parent = <&intc>;
interrupts = <0 29 4>;
reg = <0x40400000 0x10000>;
xlnx,addrwidth = <0x20>;
xlnx,sg-length-width = <0x14>;
dma-channel@40400030 {
compatible = "xlnx,axi-dma-s2mm-channel";
dma-channels = <0x1>;
interrupts = <0 29 4>;
xlnx,datawidth = <0x20>;
xlnx,device-id = <0x0>;
};
};
axi_dma_1: dma@40410000 {
#dma-cells = <1>;
clock-names = "s_axi_lite_aclk", "m_axi_s2mm_aclk";
clocks = <&clkc 15>, <&clkc 15>;
compatible = "xlnx,axi-dma1";
interrupt-names = "s2mm_introut";
interrupt-parent = <&intc>;
interrupts = <0 30 4>;
reg = <0x40410000 0x10000>;
xlnx,addrwidth = <0x20>;
xlnx,sg-length-width = <0x14>;
dma-channel@40410030 {
compatible = "xlnx,axi-dma-s2mm-channel";
dma-channels = <0x1>;
interrupts = <0 30 4>;
xlnx,datawidth = <0x20>;
xlnx,device-id = <0x1>;
};
};
axi_gpio_0: gpio@41200000 {
#gpio-cells = <3>;
clock-names = "s_axi_aclk";
clocks = <&clkc 15>;
compatible = "xlnx,axi-gpio-test";
gpio-controller ;
reg = <0x41200000 0x10000>;
xlnx,all-inputs = <0x0>;
xlnx,all-inputs-2 = <0x0>;
xlnx,all-outputs = <0x1>;
xlnx,all-outputs-2 = <0x0>;
xlnx,dout-default = <0x00000000>;
xlnx,dout-default-2 = <0x00000000>;
xlnx,gpio-width = <0x1>;
xlnx,gpio2-width = <0x20>;
xlnx,interrupt-present = <0x0>;
xlnx,is-dual = <0x0>;
xlnx,tri-default = <0xFFFFFFFF>;
xlnx,tri-default-2 = <0xFFFFFFFF>;
};
};
};
④gpio驱动代码gpio_driver.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include /* Needed for Sequence File Operations */
#include
#include
#include
#include
#include "linux/device.h"
#include "linux/miscdevice.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "linux/kthread.h"
#include "linux/wait.h"
#include "linux/completion.h"
#include "linux/workqueue.h"
#include
#include
int major;
static struct class *gpio_class = NULL;
void __iomem *base_regs;
/*
*open 接口函数
*
* */
static int axi_gpio_open(struct inode *inode,struct file *file)
{
printk("enter axi_gpio_open \r\n");
return 0;
}
/*
* write 接口函数
*
* */
static int axi_gpio_write(struct file *file,const char __user *buf, size_t count,loff_t *ppos)
{
unsigned int ret=0;
int data;
printk("gpio write start !\n");
ret=copy_from_user(&data,buf,count);
if(ret!=0)
{
printk("data read fail\n");
return -1;
}
iowrite32(data,base_regs);
return 0;
}
/*
* read 接口函数
*
* */
static int axi_gpio_read(struct file *file,char __user *buf,size_t size,loff_t *ppos)
{
printk("gpio read start!\n");
return 0;
}
static struct file_operations axi_gpio_fops={
.owner = THIS_MODULE,
.read = axi_gpio_read,
.write = axi_gpio_write,
.open = axi_gpio_open,
};
unsigned int irq_num;
static int gpio_probe(struct platform_device *pdev)
{
struct resource *io;
printk("enter gpio probe\r\n");
//从设备树中获取gpio基地址,同时进行地址映射,虚拟地址保存在 base_regs 中
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base_regs = devm_ioremap_resource(&pdev->dev, io);
printk("gpio base address is: 0X:%x\r\n",base_regs);
iowrite32(0x0,base_regs);
major = register_chrdev( 0 , "axi_gpio_dev" , &axi_gpio_fops);
gpio_class = class_create (THIS_MODULE , "axi_gpio_dev");
device_create(gpio_class, NULL, MKDEV(major,0), NULL, "axi_gpio_dev");
printk("major dev number= %d",major);
return 0;
}
static int gpio_remove(struct platform_device *pdev)
{
unregister_chrdev(major,"axi_gpio_dev");
device_destroy(gpio_class,MKDEV(major,0));
class_destroy(gpio_class);
iounmap(base_regs);
return 0;
}
static const struct of_device_id my_axigpio_of_ids[] = {
{ .compatible = "xlnx,axi-gpio-test",},
{}
};
static struct platform_driver my_axigpio_driver = {
.driver = {
.name = "my_axi_gpio",
.of_match_table = my_axigpio_of_ids,
},
.probe = gpio_probe,
.remove = gpio_remove,
};
module_platform_driver(my_axigpio_driver);
MODULE_AUTHOR("TES@gpio");
MODULE_DESCRIPTION("my gpio driver");
MODULE_ALIAS("my gpio linux driver");
MODULE_LICENSE("GPL");
⑥dma驱动代码dma0_driver.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include /* Needed for Sequence File Operations */
#include
#include
#include
#include
#include "linux/device.h"
#include "linux/miscdevice.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "linux/kthread.h"
#include "linux/wait.h"
#include "linux/completion.h"
#include "linux/workqueue.h"
#include
#include
/**
*DMA驱动程序
*
* **/
//DMA MM2S控制寄存器
volatile unsigned int * mm2s_cr;
#define MM2S_DMACR 0X00000000
//DMA MM2S状态控制寄存器
volatile unsigned int * mm2s_sr;
#define MM2S_DMASR 0X00000004
//DMA MM2S源地址低32位
volatile unsigned int * mm2s_sa;
#define MM2S_SA 0X00000018
//DMA MM2S传输长度(字节)
volatile unsigned int * mm2s_len;
#define MM2S_LENGTH 0X00000028
//DMA S2MM控制寄存器
volatile unsigned int * s2mm_cr;
#define S2MM_DMACR 0X00000030
//DMA S2MM状态控制寄存器
volatile unsigned int * s2mm_sr;
#define S2MM_DMASR 0X00000034
//DMA S2MM目标地址低32位
volatile unsigned int * s2mm_da;
#define S2MM_DA 0X00000048
//DMA S2MM传输长度(字节)
volatile unsigned int * s2mm_len;
#define S2MM_LENGTH 0X00000058
#define DMA_BUF_SIZE 1024*1024
void __iomem *base_regs;
int major;
dma_addr_t phyaddr;//物理地址
char *buf;//虚拟地址
static struct class *dma_class = NULL;
//DMA interrupt functions
int dma_flag=0;
unsigned int status=0;
static int irq_cnt=0;
static irqreturn_t dma0_s2mm_irq(int irq,void *dev_id)
{
unsigned int data;
irq_cnt++;
if(irq_cnt%5==0)
{
data = (buf[399999]<<24)|(buf[399998]<<16)|(buf[399997]<<8)|(buf[399996]);
printk(" %d",data);
}
iowrite32(0x0000f000,base_regs + S2MM_DMASR);
iowrite32(0x00001001,base_regs + S2MM_DMACR);//open int & enable DMA
iowrite32(phyaddr ,base_regs + S2MM_DA);
iowrite32(4000000 ,base_regs + S2MM_LENGTH);//write transmission length and DMA start transmission
return IRQ_HANDLED;
}
/*
*open 接口函数
*
* */
static int axi_dma_open(struct inode *inode,struct file *file)
{
printk("enter axi_dma_open \r\n");
iowrite32(0x00001001,base_regs + S2MM_DMACR);//open int & enable DMA
iowrite32(phyaddr ,base_regs + S2MM_DA);
iowrite32(400000 ,base_regs + S2MM_LENGTH);//write transmission length and DMA start transmission
return 0;
}
/*
* write 接口函数
*
* */
static int axi_dma_write(struct file *file,const char __user *buff, size_t count,loff_t *ppos)
{
printk("dma write start !\n");
return 0;
}
/*
* read 接口函数
*
* */
static int axi_dma_read(struct file *file,char __user *buff,size_t size,loff_t *ppos)
{
printk("dma read start !\n");
return 0;
}
static unsigned int axi_dma_poll(struct file *file, poll_table *wait)
{
printk("enter axi_dma_poll \r\n");
return 0;
}
static int axi_dma_mmap (struct file *file, struct vm_area_struct *vma)
{
printk("enter axi_dma_mmap \r\n");
vma->vm_flags |= VM_IO;
vma->vm_flags |= VM_LOCKED;
vma->vm_pgoff = phyaddr >> PAGE_SHIFT;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
if(remap_pfn_range(vma, vma->vm_start,vma->vm_pgoff, vma->vm_end-vma->vm_start, vma->vm_page_prot)){
printk("axi_dma_mmap failed.\n");
return -EAGAIN;
}
printk("base start=0x%08lx, \n",(unsigned long)phyaddr);
printk("vma start=0x%08lx, size=%ld.\n",
(unsigned long)vma->vm_start,
(unsigned long)vma->vm_end - (unsigned long)vma->vm_start);
return 0;
}
static struct file_operations axi_dma_fops={
.owner = THIS_MODULE,
.read = axi_dma_read,
.write = axi_dma_write,
.open = axi_dma_open,
.mmap = axi_dma_mmap, /* mmap method */
};
unsigned int irq_num;
static int my_dma_probe(struct platform_device *pdev)
{
struct resource *io;
struct device_node *node = pdev->dev.of_node;
struct device_node *child;
int err;
struct device *dev;
//从设备树中获取dma基地址,同时进行地址映射,虚拟地址保存在 base_regs 中
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base_regs = devm_ioremap_resource(&pdev->dev, io);
printk("dma base address is: 0X:%x\r\n",base_regs);
//申请中断
for_each_child_of_node(node, child){
if(of_device_is_compatible(child, "xlnx,axi-dma-s2mm-channel"))
{
printk("axi dma s2mm valid\r\n");
irq_num = irq_of_parse_and_map(child, 0);
err = request_irq(irq_num, dma0_s2mm_irq, IRQF_TRIGGER_RISING, "dma0_s2mm_irq", NULL);
if (err)
{
printk( "dma0 unable to request IRQ %d\n", irq_num);
return err;
}
}
else
{
printk("dma0 Invalid channel compatible node\n");
return -EINVAL;
}
}
///申请dma缓冲区--起始
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev = &pdev->dev;
dev->coherent_dma_mask = 0xffffffff;
buf = dma_alloc_coherent(dev, PAGE_ALIGN(DMA_BUF_SIZE), &phyaddr, GFP_KERNEL);
if(!buf)
{
printk("axi vdma buffer memory allocation failed\r\n");
return -ENOMEM;
}
else
{
printk("buf=0x%x\n",buf);
printk(" phyaddr=0x%x\r\n",phyaddr);
}
///申请dma缓冲区--结束
major = register_chrdev( 0 , "axi_dma0_dev" , &axi_dma_fops);
dma_class = class_create (THIS_MODULE , "axi_dma0_dev");
device_create(dma_class, NULL, MKDEV(major,0), NULL, "axi_dma0_dev");
printk("major dev number= %d",major);
return 0;
}
static int my_dma_remove(struct platform_device *pdev)
{
unregister_chrdev(major,"axi_dma0_dev");
device_destroy(dma_class,MKDEV(major,0));
class_destroy(dma_class);
free_irq(irq_num,NULL);
dma_free_coherent(NULL, PAGE_ALIGN(DMA_BUF_SIZE), buf, phyaddr);
iounmap(base_regs);
return 0;
}
static const struct of_device_id my_dma_of_ids[] = {
{ .compatible = "xlnx,axi-dma0",},
{}
};
static struct platform_driver my_dma_driver = {
.driver = {
.name = "my_axi_dma0",
.of_match_table = my_dma_of_ids,
},
.probe = my_dma_probe,
.remove = my_dma_remove,
};
module_platform_driver(my_dma_driver);
MODULE_AUTHOR("TEST@dma0");
MODULE_DESCRIPTION("dma0 driver");
MODULE_ALIAS("dma0 linux driver");
MODULE_LICENSE("GPL");
⑦Makefile 文件
KDIR = /home/python/Hard_disk_21G/04-Linux_Source/Kernel/linux-xlnx
PWD := $(shell pwd)
CC = $(CROSS_COMPILE)gcc
ARCH =arm
MAKE =make
obj-m:=dma0_driver.o
modules:
$(MAKE) -C $(KDIR) ARCH=$(ARCH) CROSS_COMPLE=$(CROSS_COMPLE) M=$(PWD) modules
clean:
make -C $(KDIR) ARCH=$(ARCH) CROSS_COMPLE=$(CROSS_COMPLE) M=$(PWD) clean
⑧测试文件 test_my_dma.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define DMA_BUF_SIZE 1024*1024
void delay()
{
int i=0,j=0;
for(i=0;i<10000;i++)
for(j=0;j<1000;j++)j++;
}
int main()
{
int dma0_fd,dma1_fd,gpio_fd;
int i=0,j=0;
unsigned int * dma0_mmapBuf;
unsigned int * dma1_mmapBuf;
int dma0_flag,dma1_flag,gpio_flag;
int *dest;
dma0_fd = open("/dev/axi_dma0_dev", O_RDWR, 0);
if (dma0_fd < 0) {
printf("Open %s failed\n", "/dev/axivdma_dev");
return -1;
}
dma0_mmapBuf = mmap(NULL, DMA_BUF_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, dma0_fd, 0);
dma1_fd = open("/dev/axi_dma1_dev", O_RDWR, 0);
if (dma1_fd < 0) {
printf("Open %s failed\n", "/dev/axivdma_dev");
return -1;
}
dma1_mmapBuf = mmap(NULL, DMA_BUF_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, dma1_fd, 0);
gpio_fd = open("/dev/axi_gpio_dev", O_RDWR, 0);
if (gpio_fd < 0) {
printf("Open %s failed\n", "/dev/axi_gpio_dev");
return -1;
}
gpio_flag=1;
printf("======start====\r\n");
delay();
write(gpio_fd,&gpio_flag,4);
delay();
while(1);
printf("dma test Done.\n");
return 0;
}
四.linux设备树编译
①在Ubuntu里下载device-tree-xlnx,执行下面代码
git clone https://github.com/Xilinx/device-tree-xlnx.git
cd device-tree-xlnx
git checkout xilinx-v2015.4
会得到下面文件
将其拷贝到windows上,进入SDK进行配置,可以得到以下文件
其中pl.dtsi为使用的设备树驱动文件。将pcw.dtsi、pl.dtsi、system-top.dts、zynq-7000.dtsi拷贝到ubuntu中,使用内核自带工具dtc工具(位于linux-xlnx/scripts/dtc/dtc下)将其编译成设备树。但需要先将system-top.dts修改成如下
/dts-v1/;
/include/ "zynq-7000.dtsi"
/include/ "pl.dtsi"
/include/ "pcw.dtsi"
再使用dtc工具编译设备树,指令如下:
Kernel/linux-xlnx/scripts/dtc/dtc -I dts -O dtb -o devicetree.dtb system-top.dts