问题描述
程序实现
# kNN_RBFN.py
# coding:utf-8
import numpy as np
import matplotlib.pyplot as plt
def ReadData(dataFile):
with open(dataFile, 'r') as f:
lines = f.readlines()
data_list = []
for line in lines:
line = line.strip().split()
data_list.append([float(l) for l in line])
dataArray = np.array(data_list)
return dataArray
def sign(n):
if(n>=0):
return 1
else:
return -1
def kNN(k,trainArray,dataX):
num_data=dataX.shape[0]
predY=np.zeros((num_data,))
for n in range(num_data):
distArray=np.sum((trainArray[:,:-1]-dataX[n,:])**2,axis=1)
id_list=np.argsort(distArray,axis=0).tolist()[:k]
for i in id_list:
predY[n]+=trainArray[i,-1]
predY[n]=sign(predY[n])
return predY
def GetZeroOneError(predY,dataY):
return (predY!=dataY).sum()/dataY.shape[0]
def plot_bar_chart(X,Y,nameX,nameY,saveName):
plt.figure(figsize=(10,6))
plt.bar(left=X,height=Y,width=0.8,align="center",yerr=0.000001)
for (c,w) in zip(X,Y):
plt.text(c,w*1.03,str(round(w,4)))
plt.xlabel(nameX)
plt.ylabel(nameY)
plt.xlim(X[0]-1,X[-1]+1)
plt.xticks(X)
plt.ylim(0,1)
plt.title(nameY+" versus "+nameX)
plt.savefig(saveName)
return
def RBFNetwork(k,gamma,trainArray,dataX):
num_data=dataX.shape[0]
predY=np.zeros((num_data,))
for n in range(num_data):
gaussianDistArray=np.exp(-gamma*np.sum((trainArray[:,:-1]-dataX[n,:])**2,axis=1))
id_list=np.argsort(gaussianDistArray,axis=0).tolist()[:k]
for i in id_list:
predY[n]+=trainArray[i,-1]
predY[n]=sign(predY[n])
return predY
if __name__=="__main__":
dataArray=ReadData("hw8_train.dat")
testArray=ReadData("hw8_test.dat")
k_list=[1,3,5,7,9]
ein_list=[]
eout_list=[]
for k in k_list:
predY=kNN(k,dataArray,dataArray[:,:-1])
ein_list.append(GetZeroOneError(predY,dataArray[:,-1]))
predY=kNN(k,dataArray,testArray[:,:-1])
eout_list.append(GetZeroOneError(predY,testArray[:,-1]))
# 12
plot_bar_chart(k_list,ein_list,nameX="k",nameY="Ein(gk-nbor)",saveName="12.png")
# 14
plot_bar_chart(k_list,eout_list,nameX='k',nameY="Eout(gk-bor)",saveName="14.png")
gamma_list=[-3,-1,0,1,2]
ein_list=[]
eout_list=[]
for gamma in gamma_list:
predY=RBFNetwork(dataArray.shape[0],10**gamma,dataArray,dataArray[:,:-1])
ein_list.append(GetZeroOneError(predY,dataArray[:,-1]))
predY=RBFNetwork(dataArray.shape[0],10**gamma,dataArray,testArray[:,:-1])
eout_list.append(GetZeroOneError(predY,testArray[:,-1]))
# 16
plot_bar_chart(X=gamma_list,Y=ein_list,nameX="log10(gamma)",nameY="Ein(guniform)",saveName="16.png")
# 18
plot_bar_chart(X=gamma_list,Y=eout_list,nameX="log10(gamma)",nameY="Eout(guniform)",saveName="18.png")
# kMeans.py
# coding:utf-8
from numpy import random
from kNN_RBFN import *
def kMeans(t,k,dataArray):
num_data=dataArray.shape[0]
random.seed(t)
centreIDList=random.randint(0,num_data,k).tolist()
nowCentreArray=dataArray[centreIDList,:]
tmpCentreArray=np.array(nowCentreArray)
ein=1000000
nowEin=ein-1
dict={}
while(nowEin
运行结果