Kafka分区机制介绍与示例
分区规则
Kafka中可以将Topic从物理上划分成一个或多个分区(Partition),每个分区在物理上对应一个文件夹,以”topicName_partitionIndex”的命名方式命名,该文件夹下存储这个分区的所有消息(.log)和索引文件(.index),这使得Kafka的吞吐率可以水平扩展。
生产者在生产数据的时候,可以为每条消息指定Key,这样消息被发送到broker时,会根据分区规则选择被存储到哪一个分区中,如果分区规则设置的合理,那么所有的消息将会被均匀的分布到不同的分区中,这样就实现了负载均衡和水平扩展。另外,在消费者端,同一个消费组可以多线程并发的从多个分区中同时消费数据(后续将介绍这块)。
上面所说的分区规则,是实现了kafka.producer.Partitioner接口的类,可以自定义。比如,下面的代码SimplePartitioner中,将消息的key做了hashcode,然后和分区数(numPartitions)做模运算,使得每一个key都可以分布到一个分区中:
package com.lxw1234.kafka;
import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;
public class SimplePartitioner implements Partitioner {
public SimplePartitioner (VerifiableProperties props) {
}
@Override
public int partition(Object key, int numPartitions) {
int partition = 0;
String k = (String)key;
partition = Math.abs(k.hashCode()) % numPartitions;
return partition;
}
}
在创建Topic时候可以使用–partitions
但有一点需要注意,为Topic创建分区时,分区数最好是broker数量的整数倍,这样才能是一个Topic的分区均匀的分布在整个Kafka集群中
现在创建一个topic “lxw1234”,为该topic指定4个分区,那么这4个分区将会在每个broker上各分布一个:
./kafka-topics.sh
--create
--zookeeper zk1:2181,zk2:2181,zk3:2181
--replication-factor 1
--partitions 4
--topic lxw1234
带分区规则的生产者
现在用一个生产者示例(PartitionerProducer),向Topic lxw1234中发送消息。该生产者使用的分区规则,就是上面的SimplePartitioner。从0-10一共11条消息,每条消息的key为”key”+index,消息内容为”key”+index+”–value”+index。比如:key0–value0、key1–value1、、、key10–value10。
package com.lxw1234.kafka;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class PartitionerProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("serializer.class", "kafka.serializer.StringEncoder");
props.put("metadata.broker.list", "127.0.0.17:9091,127.0.0.17:9092,127.0.0.102:9091,127.0.0.102:9092");
props.put("partitioner.class", "com.lxw1234.kafka.SimplePartitioner");
Producer producer = new Producer(new ProducerConfig(props));
String topic = "lxw1234";
for(int i=0; i<=10; i++) {
String k = "key" + i;
String v = k + "--value" + i;
producer.send(new KeyedMessage(topic,k,v));
}
producer.close();
}
}
理论上来说,生产者在发送消息的时候,会按照SimplePartitioner的规则,将key0做hashcode,然后和分区数(4)做模运算,得到分区索引:
hashcode(”key0”) % 4 = 1
hashcode(”key1”) % 4 = 2
hashcode(”key2”) % 4 = 3
hashcode(”key3”) % 4 = 0
……
对应的消息将会被发送至相应的分区中。
统计各分区消息的消费者
下面的消费者代码用来验证,在消费数据时,打印出消息所在的分区及消息内容:
package com.lxw1234.kafka;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.message.MessageAndMetadata;
public class MyConsumer {
public static void main(String[] args) {
String topic = "lxw1234";
ConsumerConnector consumer = Consumer.createJavaConsumerConnector(createConsumerConfig());
Map topicCountMap = new HashMap();
topicCountMap.put(topic, new Integer(1));
Map>> consumerMap = consumer.createMessageStreams(topicCountMap);
KafkaStream stream = consumerMap.get(topic).get(0);
ConsumerIterator it = stream.iterator();
while(it.hasNext()) {
MessageAndMetadata mam = it.next();
System.out.println("consume: Partition [" + mam.partition() + "] Message: [" + new String(mam.message()) + "] ..");
}
}
private static ConsumerConfig createConsumerConfig() {
Properties props = new Properties();
props.put("group.id","group1");
props.put("zookeeper.connect","127.0.0.132:2181,127.0.0.133:2182,127.0.0.134:2183");
props.put("zookeeper.session.timeout.ms", "400");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "smallest");
return new ConsumerConfig(props);
}
}
运行程序验证结果
先启动消费者,再运行生产者。
之后在消费者的控制台可以看到如下输出:
转载:http://lxw1234.com/archives/2015/10/538.htm