算法设计与分析--01背包问题(动态规划法解决)

http://www.cnblogs.com/qinyg/archive/2012/04/26/2471829.html

问题描述:

给定N中物品和一个背包。物品i的重量是Wi,其价值位Vi ,背包的容量为C。问应该如何选择装入背包的物品,使得转入背包的物品的总价值为最大??

在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包。不能讲物品i装入多次,也不能只装入物品的一部分。因此,该问题被称为0-1背包问题。 

 

问题分析:令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数:

(1)   V(i,0)=V(0,j)=0 

(2)   V(i,j)=V(i-1,j)  ji  

       V(i,j)=max{V(i-1,j) ,V(i-1,j-wi)+vi) } j>wi

(1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi 的背包中的价值加上第i个物品的价值vi; (b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。

#include
int V[200][200];//前i个物品装入容量为j的背包中获得的最大价值
int max(int a,int b)
{
   if(a>=b)
       return a;
   else return b;
}

int KnapSack(int n,int w[],int v[],int x[],int C)
{
    int i,j;
    for(i=0;i<=n;i++)
        V[i][0]=0;
    for(j=0;j<=C;j++)
        V[0][j]=0;
    for(i=0;i<=n-1;i++)
        for(j=0;j<=C;j++)
            if(j=0;i--)
            {
                if(V[i][j]>V[i-1][j])
                {
                x[i]=1;
                j=j-w[i];
                }
            else
                x[i]=0;
            }
            printf("选中的物品是:\n");
            for(i=0;i


 

你可能感兴趣的:(算法设计与分析--01背包问题(动态规划法解决))