分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。
换句话说,分布式锁的目的是:通过跨JVM的互斥机制来控制共享资源的访问。
分布式锁的实现方式主要有以下三种:
基于数据库实现分布式
基于缓存(redis,memcached,tair)实现分布式锁
基于Zookeeper实现分布式锁
1)基于数据库实现分布式锁
在数据库中创建一个表,表中包含方法名等字段,并在方法名字段上创建唯一索引 Unique KEY,想要执行某个方法,就使用这个方法名向表中插入数据,成功插入则获取锁,执行完成后删除对应的行数据释放锁。
DROP TABLE IF EXISTS `method_lock`;
CREATE TABLE `method_lock` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
`method_name` varchar(64) NOT NULL COMMENT '锁定的方法名',
`desc` varchar(255) NOT NULL COMMENT '备注信息',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`),
UNIQUE KEY `uidx_method_name` (`method_name`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 COMMENT='锁定中的方法';
当执行插入method_name操作时,因为我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。
使用基于数据库的这种实现方式很简单,但是对于分布式锁应该具备的条件来说,它有一些问题需要解决及优化:
1、因为是基于数据库实现的,数据库的可用性和性能将直接影响分布式锁的可用性及性能,所以,数据库需要双机部署、数据同步、主备切换;
2、不具备可重入的特性,因为同一个线程在释放锁之前,行数据一直存在,无法再次成功插入数据,所以,需要在表中新增一列,用于记录当前获取到锁的机器和线程信息,在再次获取锁的时候,先查询表中机器和线程信息是否和当前机器和线程相同,若相同则直接获取锁;
3、没有锁失效机制,因为有可能出现成功插入数据后,服务器宕机了,对应的数据没有被删除,当服务恢复后一直获取不到锁,所以,需要在表中新增一列,用于记录失效时间,并且需要有定时任务清除这些失效的数据;
4、不具备阻塞锁特性,获取不到锁直接返回失败,所以需要优化获取逻辑,循环多次去获取。
5、在实施的过程中会遇到各种不同的问题,为了解决这些问题,实现方式将会越来越复杂;依赖数据库需要一定的资源开销,性能问题需要考虑。
2)基于Redis实现分布式锁
实现
使用的是jedis来连接Redis。
实现思想
分布式锁的实现代码:
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Transaction;
import redis.clients.jedis.exceptions.JedisException;
import java.util.List;
import java.util.UUID;
/**
*/
public class DistributedLock {
private final JedisPool jedisPool;
public DistributedLock(JedisPool jedisPool) {
this.jedisPool = jedisPool;
}
/**
* 加锁
* @param locaName 锁的key
* @param acquireTimeout 获取超时时间
* @param timeout 锁的超时时间
* @return 锁标识
*/
public String lockWithTimeout(String locaName,
long acquireTimeout, long timeout) {
Jedis conn = null;
String retIdentifier = null;
try {
// 获取连接
conn = jedisPool.getResource();
// 随机生成一个value
String identifier = UUID.randomUUID().toString();
// 锁名,即key值
String lockKey = "lock:" + locaName;
// 超时时间,上锁后超过此时间则自动释放锁
int lockExpire = (int)(timeout / 1000);
// 获取锁的超时时间,超过这个时间则放弃获取锁
long end = System.currentTimeMillis() + acquireTimeout;
while (System.currentTimeMillis() < end) {
if (conn.setnx(lockKey, identifier) == 1) {
conn.expire(lockKey, lockExpire);
// 返回value值,用于释放锁时间确认
retIdentifier = identifier;
return retIdentifier;
}
// 返回-1代表key没有设置超时时间,为key设置一个超时时间
if (conn.ttl(lockKey) == -1) {
conn.expire(lockKey, lockExpire);
}
try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null) {
conn.close();
}
}
return retIdentifier;
}
/**
* 释放锁
* @param lockName 锁的key
* @param identifier 释放锁的标识
* @return
*/
public boolean releaseLock(String lockName, String identifier) {
Jedis conn = null;
String lockKey = "lock:" + lockName;
boolean retFlag = false;
try {
conn = jedisPool.getResource();
while (true) {
// 监视lock,准备开始事务
conn.watch(lockKey);
// 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
if (identifier.equals(conn.get(lockKey))) {
Transaction transaction = conn.multi();
transaction.del(lockKey);
List
测试分布式锁;
例子中使用50个线程模拟秒杀一个商品,使用–运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。
//模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
/**
* Created by liuyang on 2017/4/20.
*/
public class Service {
private static JedisPool pool = null;
static {
JedisPoolConfig config = new JedisPoolConfig();
// 设置最大连接数
config.setMaxTotal(200);
// 设置最大空闲数
config.setMaxIdle(8);
// 设置最大等待时间
config.setMaxWaitMillis(1000 * 100);
// 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
config.setTestOnBorrow(true);
pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
}
DistributedLock lock = new DistributedLock(pool);
int n = 500;
public void seckill() {
// 返回锁的value值,供释放锁时候进行判断
String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "获得了锁");
System.out.println(--n);
lock.releaseLock("resource", indentifier);
}
}
// 模拟线程进行秒杀服务
public class ThreadA extends Thread {
private Service service;
public ThreadA(Service service) {
this.service = service;
}
@Override
public void run() {
service.seckill();
}
}
public class Test {
public static void main(String[] args) {
Service service = new Service();
for (int i = 0; i < 50; i++) {
ThreadA threadA = new ThreadA(service);
threadA.start();
}
}
}
2)基于ZooKeeper实现分布式锁
我们只需知道ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的架构通过冗余服务实现高可用性。因此,如果第一次无应答,客户端就可以询问另一台ZooKeeper主机。ZooKeeper节点将它们的数据存储于一个分层的命名空间,非常类似于一个文件系统或一个前缀树结构。客户端可以在节点读写,从而以这种方式拥有一个共享的配置服务。更新是全序的。
基于ZooKeeper分布式锁的流程
这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。
优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。
缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。
使用zookeeper的可靠性和稳定性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。
基于ZooKeeper具体实现分布式锁的详细过程见:https://www.cnblogs.com/liuyang0/p/6800538.html
部分转载自:https://blog.csdn.net/xlgen157387/article/details/79036337