SAC-IA粗配准+NDT精配准

接上一篇讲的SAC-IA+ICP的配准方案,这一篇讲一下SAC-IA+ICP的方案。

正态分布变换算法(3D-NDT)
正态分布变换算法应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快,可用于点较多时的配准过程。其原理可参考Martin Magnusson的The Three-Dimensional Normal-Distributions Transform— an Efficient Representation for Registration,Surface Analysis, and Loop Detection

3D-NDT算法对参数敏感,主要涉及到以下四个参数:最小转换差异(TransformationEpsilon)、More-Thuente线搜索的最大步长(StepSize)、NDT网格结构的分辨率(Resolution)、匹配迭代的最大次数(MaximumIterations)。
在使用此算法时,可以给定或者不给定初始变换矩阵。

还是直接上代码吧:

#include <pcl/registration/ia_ransac.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/search/kdtree.h>
#include <pcl/point_representation.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/filter.h>
#include <pcl/features/normal_3d.h>
#include <pcl/registration/ndt.h>
#include <pcl/registration/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <time.h>
using pcl::NormalEstimation;
using pcl::search::KdTree;
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;

void visualize_pcd(PointCloud::Ptr pcd_src,
   PointCloud::Ptr pcd_tgt,
   PointCloud::Ptr pcd_final)
{
   pcl::visualization::PCLVisualizer viewer("registration Viewer");
   pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> src_h (pcd_src, 0, 255, 0);
   pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> tgt_h (pcd_tgt, 255, 0, 0);
   pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> final_h (pcd_final, 0, 0, 255);
   viewer.addPointCloud (pcd_src, src_h, "source cloud");
   viewer.addPointCloud (pcd_tgt, tgt_h, "tgt cloud");
   viewer.addPointCloud (pcd_final, final_h, "final cloud");
   //viewer.addCoordinateSystem(1.0);
   while (!viewer.wasStopped())
   {
       viewer.spinOnce(100);
       boost::this_thread::sleep(boost::posix_time::microseconds(100000));
   }
}

void matrix2angle (Eigen::Matrix4f &result_trans,Eigen::Vector3f &result_angle)
{
  double ax,ay,az;
  if (result_trans(2,0)==1 || result_trans(2,0)==-1)
  {
      az=0;
      double dlta;
      dlta=atan2(result_trans(0,1),result_trans(0,2));
      if (result_trans(2,0)==-1)
      {
          ay=M_PI/2;
          ax=az+dlta;
      }
      else
      {
          ay=-M_PI/2;
          ax=-az+dlta;
      }
  }
  else
  {
      ay=-asin(result_trans(2,0));
      ax=atan2(result_trans(2,1)/cos(ay),result_trans(2,2)/cos(ay));
      az=atan2(result_trans(1,0)/cos(ay),result_trans(0,0)/cos(ay));
  }
  result_angle<<ax,ay,az;
}

int
   main (int argc, char** argv)
{
   //加载点云文件(原点云,待配准)
   PointCloud::Ptr cloud_src_o (new PointCloud);
   pcl::io::loadPCDFile ("bunny_rotated.pcd",*cloud_src_o);
   PointCloud::Ptr cloud_tgt_o (new PointCloud);
   pcl::io::loadPCDFile ("bunny.pcd",*cloud_tgt_o);
   clock_t start=clock();
   //去除NAN点
   std::vector<int> indices_src; //保存去除的点的索引
   pcl::removeNaNFromPointCloud(*cloud_src_o,*cloud_src_o, indices_src);
   std::cout<<"remove *cloud_src_o nan"<<endl;
   //下采样滤波
   pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
   voxel_grid.setLeafSize(0.012,0.012,0.012);
   voxel_grid.setInputCloud(cloud_src_o);
   PointCloud::Ptr cloud_src (new PointCloud);
   voxel_grid.filter(*cloud_src);
   std::cout<<"down size *cloud_src_o from "<<cloud_src_o->size()<<"to"<<cloud_src->size()<<endl;
   pcl::io::savePCDFileASCII("bunny_src_down.pcd",*cloud_src);
   //计算表面法线
   pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne_src;
   ne_src.setInputCloud(cloud_src);
   pcl::search::KdTree< pcl::PointXYZ>::Ptr tree_src(new pcl::search::KdTree< pcl::PointXYZ>());
   ne_src.setSearchMethod(tree_src);
   pcl::PointCloud<pcl::Normal>::Ptr cloud_src_normals(new pcl::PointCloud< pcl::Normal>);//pcl::Normal是一种点类型,包含曲率
   ne_src.setRadiusSearch(0.02);//搜索邻近点的范围
   ne_src.compute(*cloud_src_normals);

   std::vector<int> indices_tgt;
   pcl::removeNaNFromPointCloud(*cloud_tgt_o,*cloud_tgt_o, indices_tgt);
   std::cout<<"remove *cloud_tgt_o nan"<<endl;

   pcl::VoxelGrid<pcl::PointXYZ> voxel_grid_2;
   voxel_grid_2.setLeafSize(0.01,0.01,0.01);
   voxel_grid_2.setInputCloud(cloud_tgt_o);
   PointCloud::Ptr cloud_tgt (new PointCloud);
   voxel_grid_2.filter(*cloud_tgt);
   std::cout<<"down size *cloud_tgt_o.pcd from "<<cloud_tgt_o->size()<<"to"<<cloud_tgt->size()<<endl;
   pcl::io::savePCDFileASCII("bunny_tgt_down.pcd",*cloud_tgt);

   pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne_tgt;
   ne_tgt.setInputCloud(cloud_tgt);
   pcl::search::KdTree< pcl::PointXYZ>::Ptr tree_tgt(new pcl::search::KdTree< pcl::PointXYZ>());
   ne_tgt.setSearchMethod(tree_tgt);
   pcl::PointCloud<pcl::Normal>::Ptr cloud_tgt_normals(new pcl::PointCloud< pcl::Normal>);
   //ne_tgt.setKSearch(20);
   ne_tgt.setRadiusSearch(0.02);
   ne_tgt.compute(*cloud_tgt_normals);

   //计算FPFH   pcl::FPFHEstimation fpfh_src;
   fpfh_src.setInputCloud(cloud_src);
   fpfh_src.setInputNormals(cloud_src_normals);
   pcl::search::KdTree<PointT>::Ptr tree_src_fpfh (new pcl::search::KdTree<PointT>);
   fpfh_src.setSearchMethod(tree_src_fpfh);
   pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs_src(new pcl::PointCloud<pcl::FPFHSignature33>());//每个特征点计算一个直方图,FPFH特征向量33维
   fpfh_src.setRadiusSearch(0.05);
   //fpfh_src.setKSearch(20);
   fpfh_src.compute(*fpfhs_src);
   std::cout<<"compute *cloud_src fpfh"<<endl;
   pcl::FPFHEstimation<pcl::PointXYZ,pcl::Normal,pcl::FPFHSignature33> fpfh_tgt;
   fpfh_tgt.setInputCloud(cloud_tgt);
   fpfh_tgt.setInputNormals(cloud_tgt_normals);
   pcl::search::KdTree<PointT>::Ptr tree_tgt_fpfh (new pcl::search::KdTree<PointT>);
   fpfh_tgt.setSearchMethod(tree_tgt_fpfh);
   pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs_tgt(new pcl::PointCloud<pcl::FPFHSignature33>());
   fpfh_tgt.setRadiusSearch(0.05);
   //fpfh_tgt.setKSearch(20);
   fpfh_tgt.compute(*fpfhs_tgt);
   std::cout<<"compute *cloud_tgt fpfh"<<endl;

   //SAC配准
   pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> scia;
   scia.setInputSource(cloud_src);
   scia.setInputTarget(cloud_tgt);
   scia.setSourceFeatures(fpfhs_src);
   scia.setTargetFeatures(fpfhs_tgt);
   //scia.setMinSampleDistance(1);
   //scia.setNumberOfSamples(2);
   //scia.setCorrespondenceRandomness(20);
   PointCloud::Ptr sac_result (new PointCloud);
   scia.align(*sac_result);
   std::cout  <<"sac has converged:"<<scia.hasConverged()<<"  score: "<<scia.getFitnessScore()<<endl;
   Eigen::Matrix4f sac_trans;
   sac_trans=scia.getFinalTransformation();
   std::cout<<sac_trans<<endl;
   pcl::io::savePCDFileASCII("bunny_transformed_sac.pcd",*sac_result);
   clock_t sac_time=clock();

   //NDT配准
   //初始化正态分布变换(NDT)
   pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ> ndt;
   //为终止条件设置最小转换差异
   ndt.setTransformationEpsilon(0.05);
   //为More-Thuente线搜索设置最大步长
   ndt.setStepSize(0.07);
   //设置NDT网格结构的分辨率(VoxelGridCovariance)(体素格的大小)
   ndt.setResolution(0.7);
   //设置匹配迭代的最大次数
   ndt.setMaximumIterations(40);
   // 设置要配准的点云
   ndt.setInputSource(cloud_src);
   //设置点云配准目标
   ndt.setInputTarget(cloud_tgt_o);
   //计算需要的刚体变换以便将输入的点云匹配到目标点云
   pcl::PointCloud<pcl::PointXYZ>::Ptr output_cloud(new pcl::PointCloud<pcl::PointXYZ>);
   ndt.align(*output_cloud, sac_trans);

   clock_t end=clock();
   cout<<"total time: "<<(double)(end-start)/(double)CLOCKS_PER_SEC<<"s"<<endl;
   cout<<"sac time: "<<(double)(sac_time-start)/(double)CLOCKS_PER_SEC<<" s"<<endl;
   cout<<"ndt time: "<<(double)(end-sac_time)/(double)CLOCKS_PER_SEC<<" s"<<endl;

   std::cout << "Normal Distributions Transform has converged:" << ndt.hasConverged()
       << " score: " << ndt.getFitnessScore() << std::endl;
   Eigen::Matrix4f ndt_trans;
   ndt_trans=ndt.getFinalTransformation();
   cout<<"ransformationProbability"<<ndt.getTransformationProbability()<<endl;
   std::cout<<ndt_trans<<endl;
   //使用创建的变换对未过滤的输入点云进行变换
   pcl::transformPointCloud(*cloud_src_o, *output_cloud, ndt_trans);
   //保存转换的输入点云
   pcl::io::savePCDFileASCII("bunny_transformed_sac_ndt.pcd", *output_cloud);

   //计算误差
   Eigen::Vector3f ANGLE_origin;
   ANGLE_origin<<0,0,M_PI/5;
   double error_x,error_y,error_z;
   Eigen::Vector3f ANGLE_result;
   matrix2angle(ndt_trans,ANGLE_result);
   error_x=fabs(ANGLE_result(0))-fabs(ANGLE_origin(0));
   error_y=fabs(ANGLE_result(1))-fabs(ANGLE_origin(1));
   error_z=fabs(ANGLE_result(2))-fabs(ANGLE_origin(2));
   cout<<"original angle in x y z:\n"<<ANGLE_origin<<endl;
   cout<<"error in aixs_x: "<<error_x<<"  error in aixs_y: "<<error_y<<"  error in aixs_z: "<<error_z<<endl;

   //可视化
   visualize_pcd(cloud_src_o,cloud_tgt_o,output_cloud);
   return (0);
}

里面部分函数的注释可以参考我的上一篇文章:
SAC-IA粗配准+ICP精配准
最后,附上效果图:
SAC-IA粗配准+NDT精配准_第1张图片

对比来看,还是SAC-IA+ICP的方案效果好。
关于NDT在PCL中的应用的更详细的解释请参考:
http://pointclouds.org/documentation/tutorials/normal_distributions_transform.php

你可能感兴趣的:(pcl点云库)